数学学科Seminar第2920讲 Spectral-Galerkin Methods for the Fully Nonlinear Monge-Ampère Equation

创建时间:  2025/10/23  邵奋芬   浏览次数:   返回

报告题目 (Title):Spectral-Galerkin Methods for the Fully Nonlinear Monge-Ampère Equation

报告人 (Speaker):李昭祥 教授(上海师范大学)

报告时间 (Time):2025年10月28日(周二) 13:00

报告地点 (Place):校本部GJ303

邀请人(Inviter):李常品、蔡敏

主办部门:理学院数学系

报告摘要:In this talk, we develop two numerical methods, namely, the Legendre-Galerkin method and the generalized Log orthogonal functions Galerkin method for numerically solving the fully nonlinear Monge-Ampère equation. Both methods are constructed based on the vanishing moment approach. To address both solution stability and computational efficiency, we propose a multiple-level framework for resolving discretization schemes. The mathematical justifications of the new approaches and the error estimates for the Legendre-Galerkin method are established. Numerical experiments validate the accuracy of our methods, and a comparative experiment demonstrates the advantage of Log orthogonal functions for problems with corner singularities. The results highlight that our methods have high-order accuracy and small computational cost.

上一条:数学学科Seminar第2921讲 hp-version continuous Petrov-Galerkin time-stepping method for fourth-order parabolic equations

下一条:数学学科Seminar第2919讲 双二次张量与双二次多项式


数学学科Seminar第2920讲 Spectral-Galerkin Methods for the Fully Nonlinear Monge-Ampère Equation

创建时间:  2025/10/23  邵奋芬   浏览次数:   返回

报告题目 (Title):Spectral-Galerkin Methods for the Fully Nonlinear Monge-Ampère Equation

报告人 (Speaker):李昭祥 教授(上海师范大学)

报告时间 (Time):2025年10月28日(周二) 13:00

报告地点 (Place):校本部GJ303

邀请人(Inviter):李常品、蔡敏

主办部门:理学院数学系

报告摘要:In this talk, we develop two numerical methods, namely, the Legendre-Galerkin method and the generalized Log orthogonal functions Galerkin method for numerically solving the fully nonlinear Monge-Ampère equation. Both methods are constructed based on the vanishing moment approach. To address both solution stability and computational efficiency, we propose a multiple-level framework for resolving discretization schemes. The mathematical justifications of the new approaches and the error estimates for the Legendre-Galerkin method are established. Numerical experiments validate the accuracy of our methods, and a comparative experiment demonstrates the advantage of Log orthogonal functions for problems with corner singularities. The results highlight that our methods have high-order accuracy and small computational cost.

上一条:数学学科Seminar第2921讲 hp-version continuous Petrov-Galerkin time-stepping method for fourth-order parabolic equations

下一条:数学学科Seminar第2919讲 双二次张量与双二次多项式