数学学科Seminar第2921讲 hp-version continuous Petrov-Galerkin time-stepping method for fourth-order parabolic equations

创建时间:  2025/10/23  邵奋芬   浏览次数:   返回

报告题目 (Title):hp-version continuous Petrov-Galerkin time-stepping method for fourth-order parabolic equations

报告人 (Speaker):易利军 教授(上海师范大学)

报告时间 (Time):2025年10月28日(周二)15:00

报告地点 (Place):校本部GJ303

邀请人(Inviter):李常品、蔡敏

主办部门:理学院数学系

报告摘要:In this talk, we shall introduce a fully discrete numerical scheme for fourth-order parabolic equations, which combines an hp-version continuous Petrov-Galerkin time-stepping method for temporal discretization with an hp-version C1 conforming finite element method for spatial discretization. Several a priori error estimates are established, expressed explicitly in terms of local temporal and spatial mesh sizes, local approximation degrees, and the local regularity of the exact solution. In the presence of initial singularities at t=0, we demonstrate that optimal algebraic convergence rates in time can be recovered by employing a graded temporal mesh. Moreover, we show that combining geometrically refined time partitions with a linear increase in approximation degrees yields exponential convergence in time. Numerical experiments are provided to support the theoretical results.

上一条:数学学科Seminar第2922讲 等离子体物理中完全欧拉-泊松系统鞘的若干结果

下一条:数学学科Seminar第2920讲 Spectral-Galerkin Methods for the Fully Nonlinear Monge-Ampère Equation


数学学科Seminar第2921讲 hp-version continuous Petrov-Galerkin time-stepping method for fourth-order parabolic equations

创建时间:  2025/10/23  邵奋芬   浏览次数:   返回

报告题目 (Title):hp-version continuous Petrov-Galerkin time-stepping method for fourth-order parabolic equations

报告人 (Speaker):易利军 教授(上海师范大学)

报告时间 (Time):2025年10月28日(周二)15:00

报告地点 (Place):校本部GJ303

邀请人(Inviter):李常品、蔡敏

主办部门:理学院数学系

报告摘要:In this talk, we shall introduce a fully discrete numerical scheme for fourth-order parabolic equations, which combines an hp-version continuous Petrov-Galerkin time-stepping method for temporal discretization with an hp-version C1 conforming finite element method for spatial discretization. Several a priori error estimates are established, expressed explicitly in terms of local temporal and spatial mesh sizes, local approximation degrees, and the local regularity of the exact solution. In the presence of initial singularities at t=0, we demonstrate that optimal algebraic convergence rates in time can be recovered by employing a graded temporal mesh. Moreover, we show that combining geometrically refined time partitions with a linear increase in approximation degrees yields exponential convergence in time. Numerical experiments are provided to support the theoretical results.

上一条:数学学科Seminar第2922讲 等离子体物理中完全欧拉-泊松系统鞘的若干结果

下一条:数学学科Seminar第2920讲 Spectral-Galerkin Methods for the Fully Nonlinear Monge-Ampère Equation