尹鑫茂


    尹鑫茂,教授,博导,国家级青年人才,物理系副主任,超导与凝聚态物理所所长。email: yinxinmao@shu.edu.cn

    课题组网站https://www.x-mol.com/groups/yinxinmao 

    ORCID: https://orcid.org/0000-0002-8246-4444 

    B站研究总结https://www.bilibili.com/video/BV1M3411y7oz/?spm_id_from=333.788.recommend_more_video.-1 


    研究领域:量子材料的光谱学研究。利用多种光谱技术对物体中复杂的电荷-自旋-轨道-晶格相互耦合作用及演变过程进行研究,从而对量子材料的超导、磁性、量子相变等宏观物理性质,以及电子结构、自旋变化、量子态准粒子激发等微观物理性质进行信息解析。近年来在国际高水平期刊上发表论文70余篇,包括PRL, APR, CSR, Science Advances,Nature Communications,AM等顶级期刊,多项研究被ScienceDaily, Phys.Org, EurekAlert AAAS, Materials Today等专业新闻媒体报道。研究成果多次被高水平杂志选为封面文章。同时是多个知名国际期刊的特邀审稿人。并著有英文专著:Introduction to Spectroscopic Ellipsometry of Thin Film Materials。曾获上海科技青年35人引领计划,江苏扬州领军人才计划,上海海外高层次领军人才计划,国家级青年人才计划等。现任物理系副主任,超导与凝聚态物理所所长。

    曾获奥林匹克物理竞赛一等奖,并因此被保送到浙江大学竺可桢学院。之后以浙大物理专业前三的成绩拿到博士全额奖学金而留学于新加坡国立大学物理系。在新加坡同步辐射光源(国家实验室)工作十余年。曾指导研究生发表影响因子15以上的高水平论文10多篇,包括一篇影响因子60的。本组优秀学生可推荐去新加坡留学或深造。


    教育及工作经历:

    2006 - 2010 本科, 浙江大学, 竺可桢学院-物理

    2010 - 2015 博士, 新加坡国立大学, 物理

    2014 - 2020 兼职研究员, 新加坡同步辐射光源

    2014 - 2020 研究员, 新加坡国立大学, 物理系

    2022.09 上海市委党校64期高级专家研修班学员

    2022.11-12 上海市教卫党委第14期党外中青班学员

    2021 - 至今 教授(国家青年人才),上海大学, 理学院物理系


    研究兴趣:

    高温超导量子材料及关联氧化物的电子结构的光谱学研究(铜基、镍基超导、Kagome超导等)

    钙钛矿氧化物界面(二维电子气)电子信息的光谱学研究

    新型量子态准粒子的探索和光谱学研究

    二维量子材料电子结构、量子相变的光谱学研究


    主持项目与荣誉:

    2023年国家自然科学基金面上项目

    2023年江苏扬州领军人才计划

    2022年上海科技青年35人引领计划

    2021年国家自然科学基金优秀青年(海外)

    2021年度上海市教育委员会的“记功”个人称号

    2020年上海市海外高层次领军人才项目

    2021年上海大学高水平项目-一流研究生教育建设

    2022年上海大学研究生精品课程改革项目

    2022年上海大学本科生全程导师进书院精品项目


    近年代表性学术论文

    国际著名出版社Wiley出版的英文专著:

    1. Introduction to Spectroscopic Ellipsometry of Thin Film Materials. WILEY-VCH. April, 2022. ISBN: 978-3527349517. https://news.shu.edu.cn/info/1013/64175.htm

    2021年后:

    23. Detection of two-dimensional small polarons at oxide interfaces by optical spectroscopy. Applied Physics Reviews 10, 031406 (2023). Selected as Featured Article. https://www.shu.edu.cn/info/1055/313584.htm

    22. Self-passivated freestanding superconducting oxide film for flexible electronics. Applied Physics Reviews 10, 031401 (2023). Selected as Featured Article. https://www.shu.edu.cn/info/1055/312574.htm

    21. Orbital hybridization-driven charge density wave transition in CsV3Sb5 kagome superconductor. Advanced Materials 35, 2209010 (2023). https://www.shu.edu.cn/info/1055/292733.htm

    20. Two-dimensional charge localization at the perovskite oxide interface. Applied Physics Reviews 9, 031405 (2022). Selected as Featured Article. https://news.shu.edu.cn/info/1013/65261.htm

    19. Observation of perfect diamagnetism and interfacial effect on the electronic structures in Nd0.8Sr0.2NiO2 superconducting infinite layers. Nature Communications 13, 743 (2022). https://news.shu.edu.cn/info/1013/63725.htm

    18. Recent Developments in 2D Transition Metal Dichalcogenides: Phase Transition and Applications of the (Quasi-)Metallic Phases. Chemical Society Reviews 50, 10087-10115 (2021). Selected as Cover. https://news.shu.edu.cn/info/1013/61884.htm

    17. 1D chained structure in quasi-metallic phase 2D transition metal dichalcogenides and their anisotropic electronic structures. Applied Physics Reviews 8, 011313 (2021) (invited review). Selected as Featured Article. https://news.shu.edu.cn/info/1013/61067.htm

    16. Dynamic Segregation of Reduced Ruddlesden-Popper Sr2NiO3 and SrNi2O3 Phases during SrNiO3 Epitaxial Growth. Science Advances 7(10), eabe2866 (2021).

    2020年前:

    15. Phase diagram and superconducting dome of infinite-layer Nd1-xSrxNiO2 thin films. Physical Review Letters 125, 147003 (2020)

    14. Interfacial oxygen-driven charge localization and plasmon excitation in unconventional superconductors. Advanced Materials 32, 2000153 (2020). Selected as Back Cover.

    13. Anisotropic collective charge excitations in quasimetallic 2D transition-metal dichalcogenides. Advanced Science 7 (10), 1902726 (2020). Selected as Inside Cover. It was reported in many science news (Anisotropic plasmons in quasi-metallic 2D materials), such as Phys.Org, NewsBeezer, Knowledia New, QNewsHub.

    12. Electronic Modulation in Site-Selective Occupation of Quasi-2D Triangular-lattice Cs2CuCl4-xBrx Perovskite. ACS Appl. Mater. Interfaces. 12 (3) 4114-4122 (2020).

    11. Quantum correlated plasmons and their tunability in undoped and doped Mott-insulator cuprates. ACS Photonics 6(12), 3281-3289 (2019).

    10. Modulation of new excitons in transition metal dichalcogenide-perovskite oxide system. Advanced Science 6 (12), 1900446 (2019). Selected as Frontispiece Cover.

    9. Three-dimensional resonant exciton in monolayer tungsten diselenide actuated by spin-orbit coupling. ACS Nano 13 (12), 14529-14539 (2019).

    8. Unravelling High-Yield Phase-Transition Dynamics in Transition Metal Dichalcogenides on Metallic Substrates. Advanced Science 6 (7), 1802093 (2019). Selected as Frontispiece Cover). It was reported in many science news (Phase transition dynamics in two-dimensional materials), such as ScienceDaily, Phys.Org, EurekAlert AAAS.

    7. Oxygen Electromigration and Energy Band Reconstruction Induced by Electrolyte Field Effect at Oxide Interfaces. Physical Review Letters 121, 146802 (2018)

    6. Modulation of manganite nano-film properties mediated by strong influence of strontium titanate excitons. ACS Applied Materials & Interfaces 10 (41), 35563-35570 (2018).

    5. The Mechanism of Electrolyte Gating on High-Tc Cuprates: The Role of Oxygen Migration and Electrostatics. ACS Nano 11 (10), 9950 (2017)

    4. Tunable Inverted Gap in Monolayer Quasi-Metallic MoS2 Induced by Strong Charge-Lattice Coupling. Nature Communications 8, 486 (2017). This work was highlighted in https://doi.org/10.1557/mrs.2017.246. It was reported in many science news (Scientists unravel new insights into promising semiconductor material), such as ScienceDaily, Phys.Org, EurekAlert AAAS, Materials Today News, AZoMaterials, EE World Online.

    3. Unraveling the magnetic coupling in the interface of the exchange-biased IrMn/Permalloy multilayers. Materials Letters 187, 133-135 (2017).

    2. Coexistence of Midgap Antiferromagnetic and Mott States in Undoped, Hole- and Electron-Doped Ambipolar Cuprates. Physical Review Letters 116, 197002 (2016).

    1. Unraveling the interplay of electronic and spin structures in controlling macroscopic properties of manganite ultra-thin films. NPG (Nature Publishing Group) Asia Materials 7, e196 (2015).


    (最后更新日期:2023.09.6)

    尹鑫茂


      尹鑫茂,教授,博导,国家级青年人才,物理系副主任,超导与凝聚态物理所所长。email: yinxinmao@shu.edu.cn

      课题组网站https://www.x-mol.com/groups/yinxinmao 

      ORCID: https://orcid.org/0000-0002-8246-4444 

      B站研究总结https://www.bilibili.com/video/BV1M3411y7oz/?spm_id_from=333.788.recommend_more_video.-1 


      研究领域:量子材料的光谱学研究。利用多种光谱技术对物体中复杂的电荷-自旋-轨道-晶格相互耦合作用及演变过程进行研究,从而对量子材料的超导、磁性、量子相变等宏观物理性质,以及电子结构、自旋变化、量子态准粒子激发等微观物理性质进行信息解析。近年来在国际高水平期刊上发表论文70余篇,包括PRL, APR, CSR, Science Advances,Nature Communications,AM等顶级期刊,多项研究被ScienceDaily, Phys.Org, EurekAlert AAAS, Materials Today等专业新闻媒体报道。研究成果多次被高水平杂志选为封面文章。同时是多个知名国际期刊的特邀审稿人。并著有英文专著:Introduction to Spectroscopic Ellipsometry of Thin Film Materials。曾获上海科技青年35人引领计划,江苏扬州领军人才计划,上海海外高层次领军人才计划,国家级青年人才计划等。现任物理系副主任,超导与凝聚态物理所所长。

      曾获奥林匹克物理竞赛一等奖,并因此被保送到浙江大学竺可桢学院。之后以浙大物理专业前三的成绩拿到博士全额奖学金而留学于新加坡国立大学物理系。在新加坡同步辐射光源(国家实验室)工作十余年。曾指导研究生发表影响因子15以上的高水平论文10多篇,包括一篇影响因子60的。本组优秀学生可推荐去新加坡留学或深造。


      教育及工作经历:

      2006 - 2010 本科, 浙江大学, 竺可桢学院-物理

      2010 - 2015 博士, 新加坡国立大学, 物理

      2014 - 2020 兼职研究员, 新加坡同步辐射光源

      2014 - 2020 研究员, 新加坡国立大学, 物理系

      2022.09 上海市委党校64期高级专家研修班学员

      2022.11-12 上海市教卫党委第14期党外中青班学员

      2021 - 至今 教授(国家青年人才),上海大学, 理学院物理系


      研究兴趣:

      高温超导量子材料及关联氧化物的电子结构的光谱学研究(铜基、镍基超导、Kagome超导等)

      钙钛矿氧化物界面(二维电子气)电子信息的光谱学研究

      新型量子态准粒子的探索和光谱学研究

      二维量子材料电子结构、量子相变的光谱学研究


      主持项目与荣誉:

      2023年国家自然科学基金面上项目

      2023年江苏扬州领军人才计划

      2022年上海科技青年35人引领计划

      2021年国家自然科学基金优秀青年(海外)

      2021年度上海市教育委员会的“记功”个人称号

      2020年上海市海外高层次领军人才项目

      2021年上海大学高水平项目-一流研究生教育建设

      2022年上海大学研究生精品课程改革项目

      2022年上海大学本科生全程导师进书院精品项目


      近年代表性学术论文

      国际著名出版社Wiley出版的英文专著:

      1. Introduction to Spectroscopic Ellipsometry of Thin Film Materials. WILEY-VCH. April, 2022. ISBN: 978-3527349517. https://news.shu.edu.cn/info/1013/64175.htm

      2021年后:

      23. Detection of two-dimensional small polarons at oxide interfaces by optical spectroscopy. Applied Physics Reviews 10, 031406 (2023). Selected as Featured Article. https://www.shu.edu.cn/info/1055/313584.htm

      22. Self-passivated freestanding superconducting oxide film for flexible electronics. Applied Physics Reviews 10, 031401 (2023). Selected as Featured Article. https://www.shu.edu.cn/info/1055/312574.htm

      21. Orbital hybridization-driven charge density wave transition in CsV3Sb5 kagome superconductor. Advanced Materials 35, 2209010 (2023). https://www.shu.edu.cn/info/1055/292733.htm

      20. Two-dimensional charge localization at the perovskite oxide interface. Applied Physics Reviews 9, 031405 (2022). Selected as Featured Article. https://news.shu.edu.cn/info/1013/65261.htm

      19. Observation of perfect diamagnetism and interfacial effect on the electronic structures in Nd0.8Sr0.2NiO2 superconducting infinite layers. Nature Communications 13, 743 (2022). https://news.shu.edu.cn/info/1013/63725.htm

      18. Recent Developments in 2D Transition Metal Dichalcogenides: Phase Transition and Applications of the (Quasi-)Metallic Phases. Chemical Society Reviews 50, 10087-10115 (2021). Selected as Cover. https://news.shu.edu.cn/info/1013/61884.htm

      17. 1D chained structure in quasi-metallic phase 2D transition metal dichalcogenides and their anisotropic electronic structures. Applied Physics Reviews 8, 011313 (2021) (invited review). Selected as Featured Article. https://news.shu.edu.cn/info/1013/61067.htm

      16. Dynamic Segregation of Reduced Ruddlesden-Popper Sr2NiO3 and SrNi2O3 Phases during SrNiO3 Epitaxial Growth. Science Advances 7(10), eabe2866 (2021).

      2020年前:

      15. Phase diagram and superconducting dome of infinite-layer Nd1-xSrxNiO2 thin films. Physical Review Letters 125, 147003 (2020)

      14. Interfacial oxygen-driven charge localization and plasmon excitation in unconventional superconductors. Advanced Materials 32, 2000153 (2020). Selected as Back Cover.

      13. Anisotropic collective charge excitations in quasimetallic 2D transition-metal dichalcogenides. Advanced Science 7 (10), 1902726 (2020). Selected as Inside Cover. It was reported in many science news (Anisotropic plasmons in quasi-metallic 2D materials), such as Phys.Org, NewsBeezer, Knowledia New, QNewsHub.

      12. Electronic Modulation in Site-Selective Occupation of Quasi-2D Triangular-lattice Cs2CuCl4-xBrx Perovskite. ACS Appl. Mater. Interfaces. 12 (3) 4114-4122 (2020).

      11. Quantum correlated plasmons and their tunability in undoped and doped Mott-insulator cuprates. ACS Photonics 6(12), 3281-3289 (2019).

      10. Modulation of new excitons in transition metal dichalcogenide-perovskite oxide system. Advanced Science 6 (12), 1900446 (2019). Selected as Frontispiece Cover.

      9. Three-dimensional resonant exciton in monolayer tungsten diselenide actuated by spin-orbit coupling. ACS Nano 13 (12), 14529-14539 (2019).

      8. Unravelling High-Yield Phase-Transition Dynamics in Transition Metal Dichalcogenides on Metallic Substrates. Advanced Science 6 (7), 1802093 (2019). Selected as Frontispiece Cover). It was reported in many science news (Phase transition dynamics in two-dimensional materials), such as ScienceDaily, Phys.Org, EurekAlert AAAS.

      7. Oxygen Electromigration and Energy Band Reconstruction Induced by Electrolyte Field Effect at Oxide Interfaces. Physical Review Letters 121, 146802 (2018)

      6. Modulation of manganite nano-film properties mediated by strong influence of strontium titanate excitons. ACS Applied Materials & Interfaces 10 (41), 35563-35570 (2018).

      5. The Mechanism of Electrolyte Gating on High-Tc Cuprates: The Role of Oxygen Migration and Electrostatics. ACS Nano 11 (10), 9950 (2017)

      4. Tunable Inverted Gap in Monolayer Quasi-Metallic MoS2 Induced by Strong Charge-Lattice Coupling. Nature Communications 8, 486 (2017). This work was highlighted in https://doi.org/10.1557/mrs.2017.246. It was reported in many science news (Scientists unravel new insights into promising semiconductor material), such as ScienceDaily, Phys.Org, EurekAlert AAAS, Materials Today News, AZoMaterials, EE World Online.

      3. Unraveling the magnetic coupling in the interface of the exchange-biased IrMn/Permalloy multilayers. Materials Letters 187, 133-135 (2017).

      2. Coexistence of Midgap Antiferromagnetic and Mott States in Undoped, Hole- and Electron-Doped Ambipolar Cuprates. Physical Review Letters 116, 197002 (2016).

      1. Unraveling the interplay of electronic and spin structures in controlling macroscopic properties of manganite ultra-thin films. NPG (Nature Publishing Group) Asia Materials 7, e196 (2015).


      (最后更新日期:2023.09.6)