彭亚新

    彭亚新 Peng Yaxin

    职务/职称:Professor

    邮箱:yaxin.peng@shu.edu.cn

    电话:13636337103


    研究领域:Geometric variational method, Manifold learning, Metric learning, Structure preserving based Statistic learning, Data mining and processing, Reinforcement Learning


    教育经历:

    2005.9-2008.9 Ecole Normale Superieur de Lyon, UMLP PHD of ENS-Lyon, PHD (O.Druet)

    East China Normal University, Department of Mathematics, PHD (沈纯理)

    2002.9-2005.7 East China Normal University, Department of Mathematics, Master (郑宇)

    1998.9-2002.7 Anhui Normal University, Department of Mathematics, Bachelor


    工作经历:

    2008.9-至今 Shanghai University, Department of Mathematics

    2012.2-2013.2 Visiting Scholars to Arizona state University(Jieping Ye)


    代表性科研项目:

    NSFC: 12026416, Thematic Workshop on the theories of Geometry and PDE with their applications on Data Analysis

    NSFC: 11771276, Geometric Model and Intrinsic algorithm for atlas of 3D medical images

    NSFC: 11101260, Geometric flow and its applications to medical image processing

    NSFC: 11026149, Beltrami flow and its applications to medical image processing


    代表性学术论文:

    - W. Wang, Y. Zhu, Y. Zhou, C. Shen, J. Tang, Z. Xu, Y. Peng*, Y. Zhang*, Exploring Gradient Explosion in Generative Adversarial Imitation Learning: A Probabilistic Perspective, Accepted, AAAI 2024 (CCF A区)

    -J. Yang, J.Zhu, X. Ding, Y. Peng*, Y. Zhang*, A memory pool variational autoencoder framework for cross-domain recommendation, Expert Systems with Applications, Volume 241, 2024, 122771 (中科院一区, IF= 8.5)

    -Z..Ma, J. Hou, W. Zhu, Y. Peng*, Y. Li*, PMNN: Physical model-driven neural network for solving time-fractional differential equations, Chaos, Solitons & Fractals, Volume 177, 2023,114238 (中科院一区, IF= 7.8)

    -Y. Chen, Z. Jia, Y. Peng* and Y. Peng*, "Efficient Robust Watermarking Based on Structure-Preserving Quaternion Singular Value Decomposition," in IEEE Transactions on Image Processing, vol. 32, pp. 3964-3979, 2023, doi: 10.1109/TIP.2023.3293773. (中科院一区, IF= 10.6)

    - Y. Zhou, M. Lu, X. Liu, Z. Che, Z. Xu, J. Tang, Y. Zhang, Y. Peng and Y. Peng*, Distributional Generative Adversarial Imitation Learning with Reproducing Kernel Generalization, Neural Networks, accepted, 16 May 2023. (中科院一区, IF= 9.657)

    -Y. Huang, N. Liu, Z. Che, Z. Xu, C. Shen, Y. Peng, G. Zhang*, X. Liu, F. Feng, J. Tang, “CP3: Channel pruning plug-in for point cloud network,” in CVPR, pp. 5302-5312 ,28 Feb 2023. (CCF A区)

    - X. Ding; C. Shen; T. Zeng; Y. Peng*; SAB Net: A semantic attention boosting framework for semantic segmentation, IEEE Transactions on Neural Networks and Learning Systems, 2022, doi: 10.1109/TNNLS.2022.3144003. (中科院一区,IF=14.225)

    -Y. Zhou, Y. Zhang, X. Liu, W. Wang, Z. Che, Z. Xu, J. Tang, and Y. Peng*,Generalization and Computation for Policy Classes of Generative Adversarial Imitation Learning,PPSN 2022, LNCS 13398, pp. 385–399, 2022.

    - X. Ding; T. Zeng; J. Che;Z. Che; Y. Peng*; SRRNet: A Semantic Representation Refinement Network for Image Segmentation, IEEE Transactions on Multimedia, 2022. (中科院一区,IF=8.182/Q1)

    -Y. Huang, X. Liu, Y. Zhu, Z. Xu, C. Shen, Z. Che, G. Zhang, Y. Peng, F. Feng, J. Tang, “Label-guided auxiliary training improves 3D object detector,” in ECCV, 684-700, 2022.

    - X. Ding; C. Shen; Z. Che; T. Zeng; Y. Peng*; SCARF: A semantic constrained attention refinement network for semantic segmentation, in IEEE International Conference on Computer Vision Workshops (ICCVW-21 Best student award), 2021: 3002-3011.

    -X. Ding,Y Peng*,C. Shen,T. Zeng CAB U-Net: An end-to-end category attention boosting algorithm for segmentation, Computerized Medical Imaging and Graphics, 84,101764, 2020.

    - S.Ying, L. Cai, C. He, Y. Peng*, Geometric understanding for unsupervised subspace learning. in International Joint Conference on Artificial Intelligence (IJCAI). 4171-4177, 2019. (CCF A区)

    -Z. Wen, M. Sun, Y. Li, S.Ying, Y. Peng*. Asymmetric Local Metric Learning with PSD Constraint for Person Re-identification. International Conference on Robotics and Automation (ICRA) :4862-4868, 2019

    -S.Ying, X. Zhang, Y. Peng*, D. Shen. Longitudinal Image Analysis via Path Regression on the Image Manifold. Journal of the Operations Research Society of China. 7(4):599-614, 2019.

    - Y. Peng. L. Hu, S.Ying, C.Shen*. Global nonlinear metric learning by gluing local linear metrics. in SIAM International Conference on Data Mining, 423-431, 2018.

    - S.Ying, Z. Wen, J, Shi, Y. Peng*, J. Peng, H. Qiao, Manifold preserving: an intrinsic approach for semi-supervised distance metric learning, IEEE Transactions on Neural Networks and Learning Systems. 29(7):2731-2742, 2018. (中科院一区,IF=14.225)

    - Y. Peng, Bao LL, Pi L*, Object(s)-of-interest segmentation for images with inhomogeneous intensities based on curve evolution. Neurocomputing. 195:13-18, 2016.


    (最后更新日期:2023.12.9)

    彭亚新

      彭亚新 Peng Yaxin

      职务/职称:Professor

      邮箱:yaxin.peng@shu.edu.cn

      电话:13636337103


      研究领域:Geometric variational method, Manifold learning, Metric learning, Structure preserving based Statistic learning, Data mining and processing, Reinforcement Learning


      教育经历:

      2005.9-2008.9 Ecole Normale Superieur de Lyon, UMLP PHD of ENS-Lyon, PHD (O.Druet)

      East China Normal University, Department of Mathematics, PHD (沈纯理)

      2002.9-2005.7 East China Normal University, Department of Mathematics, Master (郑宇)

      1998.9-2002.7 Anhui Normal University, Department of Mathematics, Bachelor


      工作经历:

      2008.9-至今 Shanghai University, Department of Mathematics

      2012.2-2013.2 Visiting Scholars to Arizona state University(Jieping Ye)


      代表性科研项目:

      NSFC: 12026416, Thematic Workshop on the theories of Geometry and PDE with their applications on Data Analysis

      NSFC: 11771276, Geometric Model and Intrinsic algorithm for atlas of 3D medical images

      NSFC: 11101260, Geometric flow and its applications to medical image processing

      NSFC: 11026149, Beltrami flow and its applications to medical image processing


      代表性学术论文:

      - W. Wang, Y. Zhu, Y. Zhou, C. Shen, J. Tang, Z. Xu, Y. Peng*, Y. Zhang*, Exploring Gradient Explosion in Generative Adversarial Imitation Learning: A Probabilistic Perspective, Accepted, AAAI 2024 (CCF A区)

      -J. Yang, J.Zhu, X. Ding, Y. Peng*, Y. Zhang*, A memory pool variational autoencoder framework for cross-domain recommendation, Expert Systems with Applications, Volume 241, 2024, 122771 (中科院一区, IF= 8.5)

      -Z..Ma, J. Hou, W. Zhu, Y. Peng*, Y. Li*, PMNN: Physical model-driven neural network for solving time-fractional differential equations, Chaos, Solitons & Fractals, Volume 177, 2023,114238 (中科院一区, IF= 7.8)

      -Y. Chen, Z. Jia, Y. Peng* and Y. Peng*, "Efficient Robust Watermarking Based on Structure-Preserving Quaternion Singular Value Decomposition," in IEEE Transactions on Image Processing, vol. 32, pp. 3964-3979, 2023, doi: 10.1109/TIP.2023.3293773. (中科院一区, IF= 10.6)

      - Y. Zhou, M. Lu, X. Liu, Z. Che, Z. Xu, J. Tang, Y. Zhang, Y. Peng and Y. Peng*, Distributional Generative Adversarial Imitation Learning with Reproducing Kernel Generalization, Neural Networks, accepted, 16 May 2023. (中科院一区, IF= 9.657)

      -Y. Huang, N. Liu, Z. Che, Z. Xu, C. Shen, Y. Peng, G. Zhang*, X. Liu, F. Feng, J. Tang, “CP3: Channel pruning plug-in for point cloud network,” in CVPR, pp. 5302-5312 ,28 Feb 2023. (CCF A区)

      - X. Ding; C. Shen; T. Zeng; Y. Peng*; SAB Net: A semantic attention boosting framework for semantic segmentation, IEEE Transactions on Neural Networks and Learning Systems, 2022, doi: 10.1109/TNNLS.2022.3144003. (中科院一区,IF=14.225)

      -Y. Zhou, Y. Zhang, X. Liu, W. Wang, Z. Che, Z. Xu, J. Tang, and Y. Peng*,Generalization and Computation for Policy Classes of Generative Adversarial Imitation Learning,PPSN 2022, LNCS 13398, pp. 385–399, 2022.

      - X. Ding; T. Zeng; J. Che;Z. Che; Y. Peng*; SRRNet: A Semantic Representation Refinement Network for Image Segmentation, IEEE Transactions on Multimedia, 2022. (中科院一区,IF=8.182/Q1)

      -Y. Huang, X. Liu, Y. Zhu, Z. Xu, C. Shen, Z. Che, G. Zhang, Y. Peng, F. Feng, J. Tang, “Label-guided auxiliary training improves 3D object detector,” in ECCV, 684-700, 2022.

      - X. Ding; C. Shen; Z. Che; T. Zeng; Y. Peng*; SCARF: A semantic constrained attention refinement network for semantic segmentation, in IEEE International Conference on Computer Vision Workshops (ICCVW-21 Best student award), 2021: 3002-3011.

      -X. Ding,Y Peng*,C. Shen,T. Zeng CAB U-Net: An end-to-end category attention boosting algorithm for segmentation, Computerized Medical Imaging and Graphics, 84,101764, 2020.

      - S.Ying, L. Cai, C. He, Y. Peng*, Geometric understanding for unsupervised subspace learning. in International Joint Conference on Artificial Intelligence (IJCAI). 4171-4177, 2019. (CCF A区)

      -Z. Wen, M. Sun, Y. Li, S.Ying, Y. Peng*. Asymmetric Local Metric Learning with PSD Constraint for Person Re-identification. International Conference on Robotics and Automation (ICRA) :4862-4868, 2019

      -S.Ying, X. Zhang, Y. Peng*, D. Shen. Longitudinal Image Analysis via Path Regression on the Image Manifold. Journal of the Operations Research Society of China. 7(4):599-614, 2019.

      - Y. Peng. L. Hu, S.Ying, C.Shen*. Global nonlinear metric learning by gluing local linear metrics. in SIAM International Conference on Data Mining, 423-431, 2018.

      - S.Ying, Z. Wen, J, Shi, Y. Peng*, J. Peng, H. Qiao, Manifold preserving: an intrinsic approach for semi-supervised distance metric learning, IEEE Transactions on Neural Networks and Learning Systems. 29(7):2731-2742, 2018. (中科院一区,IF=14.225)

      - Y. Peng, Bao LL, Pi L*, Object(s)-of-interest segmentation for images with inhomogeneous intensities based on curve evolution. Neurocomputing. 195:13-18, 2016.


      (最后更新日期:2023.12.9)