丁鹏
姓名:丁鹏
职务/职称:研究员/伟长学者特聘教授/纳米中心支部书记
邮箱:dingpeng@t.shu.edu.cn
电话:021-66136025
Web: https://www.scholarmate.com/P/U7Br2u
https://www.researchgate.net/profile/Peng_Ding4
研究领域
1)高分子复合材料功能化与应用;
2)人工智能与高分子复合材料研发;
3)废旧塑料低碳再生及资源化。
教育与工作经历
丁鹏,博士,上海大学研究员/伟长学者特聘教授/纳米中心支部书记,上海市优秀技术带头人,江苏省双创人才。
毕业于中国科学技术大学高分子专业,一直致力于高分子复合材料相关的基础研究、技术开发和成果转化工作。是中国复合材料学会导热专委会副秘书长、上海市新材料产业发展战略咨询专家委员会特聘专家、长三角改性塑料联盟副秘书长、上海塑料工程技术学会副会长、塑料绿色智造创新联合体副会长兼秘书长。《塑料工业》、《上海塑料》、《塑料助剂》编委。
作为首席科学家,负责国家重点研发计划项目2项,同时承担国家自然基金面上项目、省部级重点/重大项目和企业委托项目等20余项。发表论文70余篇,篇均引用超50次;参与国家标准2项(第一起草人);公开发明专利70余项,授权30余项。入选2023“全球Top 2%顶尖科学家”榜单。科研成果得到央视《新闻联播》、《经济半小时》、搜狐等媒体关注。
获得2013年上海市技术发明二等奖(第一完成人)、2014年上海产学研合作优秀项目三等奖(负责人)、2008年上海市科技进步一等奖(主要完成人)、2010年上海市技术发明二等奖(主要完成人)、上海市育才奖、上海市人才发展基金等。
近五年主持的部分科研项目
1) 科技部,国家重点研发计划重点专项项目,知识与数据双驱动的树脂基复合材料智能设计共性关键技术研发与空间应用,2022-11 至 2025-10,在研,主持;
2) 科技部,国家重点研发计划重点专项项目,废旧塑料的清洁增值再生技术开发及在5G、汽车领域的应用示范,2020-09 至 2021-11,结题,主持;
3) 国家自然科学基金委员会,面上项目,智能导热高分子复合材料结构构筑及主动热管理作用机理研究,2021-01 至 2024-12,在研,主持;
4) 云南省科技厅,云南省新材料重大专项,基于高分子材料应用的锡基功能助剂制备关键技术研发(子任务),2023-01 至 2025-12,在研,主持;
5) 云南省科技厅,云南省稀贵金属材料基因工程重大项目,锡铟材料基因工程专用数据库平台建设及示范应用(子课题),2020-01 至 2022-12,在研,主持;
6) 上海市科委,上海市优秀技术带头人计划,基于多尺度复合技术的超高韧耐温高分子复合材料规模化制备与应用,2017-05 至 2020-04,结题,主持;
7) 产学研合作项目20余项。
代表性学术论文
(1) Zhou, S.; Xu, T.; Song, N.; Dai, J.; Qian, G.; Ding, P.* Oriented BN/BNNT heterostructure constructed by interface engineering strategy for polyamide-imide composite film with advanced flexibility and thermally conductive properties. Chemical Engineering Journal 2024, 148653. DOI: https://doi.org/10.1016/j.cej.2024.148653
(2) Zhang, Y.; Zheng, Z.; Chen, F.; Li, M.; Ding, P.*; Lu, W. Accelerating the discovery of N-annulated perylene organic sensitizers via an interpretable machine learning model. Journal of Molecular Structure 2024, 1296, 136855. DOI: https://doi.org/10.1016/j.molstruc.2023.136855
(3) Xing, W.; Hongye, W.; Yifei, G.; Dong, F.; Ding, P.; Qian, L.; Quan, Q. Graph neural networks for molecular and material representation. Journal of Materials Informatics 2023, 3 (2), 12. DOI: https://doi.org/10.20517/jmi.2023.10
(4) Li, X.; Xu, T. L.; Cao, W. J.; Wang, M. H.; Chen, F. Q.; Jin, L. Y.; Song, N.; Sun, S.; Ding, P.* Graphene/carbon fiber network constructed by co-carbonization strategy for functional integrated polyimide composites with enhanced electromagnetic shielding and thermal conductive properties. Chemical Engineering Journal 2023, 464, 9. DOI: https://doi.org/10.1016/j.cej.2023.142595
(5) Jiang, F.; Li, Y. T.; Ye, M. H.; Chen, X. L.; Shen, Y. F.; Ding, P.*; Yang, L. Hierarchically multifunctional thermally conductive Boron Nitride/ Polyurethane fibrous membranes via constructing alternating multi-layer orientation structure. Composites Part a-Applied Science And Manufacturing 2023, 168, 10. DOI: https://doi.org/10.1016/j.compositesa.2023.107498
(6) Chen, F. Q.; Guo, Z.; Wang, J. H.; Ouyang, R. H.; Ma, D. P.; Gao, P.; Pan, F.; Ding, P.* Accelerated feasible screening of flame-retardant polymeric composites using data-driven multi-objective optimization. Computational Materials Science 2023, 230, 8. DOI: https://doi.org/10.1016/j.commatsci.2023.112479
(7) Chen, F.; Weng, L.; Wang, J.; Wu, P.; Ma, D.; Pan, F.; Ding, P.* An adaptive framework to accelerate optimization of high flame retardant composites using machine learning. Composites Science And Technology 2023, 231, 109818. DOI: https://doi.org/10.1016/j.compscitech.2022.109818
(8) Zhou, S.; Xu, T.; Jin, L.; Song, N.; Ding, P.* Ultraflexible polyamide-imide films with simultaneously improved thermal conductive and mechanical properties: Design of assembled well-oriented boron nitride nanosheets. Composites Science And Technology 2022, 219, 109259. DOI: https://doi.org/10.1016/j.compscitech.2022.109259
(9) Wu, X.; Chen, C.; Li, P.; Zhong, M.; Wang, J.; Qian, Q.; Ding, P.; Yao, J.; Guo, Y. FTAP: Feature Transferring Autonomous Machine Learning Pipeline. Information Sciences 2022, 593C, 385-397. DOI: https://doi.org/10.1016/j.ins.2022.02.006
(10) Song, N.; Wang, P.; Jin, L.; Zhang, F.; Wang, Z.; Ding, P.* Tunable oriented cellulose/BNNSs films designed for high-performance thermal management. Chemical Engineering Journal 2022, 437, 135404. DOI: https://doi.org/10.1016/j.cej.2022.135404
(11) Jin, L. Y.; Cao, W. J.; Wang, P.; Song, N.; Ding, P.* Interconnected MXene/Graphene Network Constructed by Soft Template for Multi-Performance Improvement of Polymer Composites. Nano-Micro Letters 2022, 14 (1), 17. DOI: https://doi.org/10.1007/s40820-022-00877-7
(12) Jin, L.; Wang, P.; Cao, W.; Song, N.; Ding, P.* Isolated Solid Wall-Assisted Thermal Conductive Performance of Three-Dimensional Anisotropic MXene/Graphene Polymeric Composites. ACS Applied Materials & Interfaces 2022, 14 (1), 1747-1756. DOI: https://doi.org/10.1021/acsami.1c20267
(13) Jiao, D. J.; Song, N.; Ding, P.*; Shi, L. Y. Enhanced thermal conductivity in oriented cellulose nanofibril/graphene composites via interfacial engineering. Composites Communications 2022, 31, 7. DOI: https://doi.org/10.1016/j.coco.2022.101101
(14) Zhou, S.; Xu, T.; Jiang, F.; Song, N.; Ding, P.* High-Performance Polyamide-imide Films: Effect of Functionalization Degree of BN Nanosheets. Composites Science And Technology 2021, 213, 108907. DOI: https://doi.org/10.1016/j.compscitech.2021.108907
(15) Xu, T.; Zhou, S.; Jiang, F.; Song, N.; Shi, L.; Ding, P.* Polyamide composites with improved thermal conductivity for effective thermal management: The three-dimensional vertically aligned carbon network. Composites Part B: Engineering 2021, 224, 109205. DOI: https://doi.org/10.1016/j.compositesb.2021.109205
(16) Song, Y.; Jiang, F.; Song, N.; Shi, L.; Ding, P.* Multilayered Structural Design of Flexible Films for Smart Thermal Management. Composites Part A: Applied Science and Manufacturing 2021, 141, 106222. DOI: https://doi.org/10.1016/j.compositesa.2020.106222
(17) Song, N.; Wang, Q.; Jiao, D.; Pan, H.; Shi, L.; Ding, P.* Highly thermally conductive SiO2-coated NFC/BNNS hybrid films with water resistance. Composites Part A: Applied Science and Manufacturing 2021, 143, 106261. DOI: https://doi.org/10.1016/j.compositesa.2020.106261
(18) Jiang, F.; Zhou, S.; Xu, T.; Song, N.; Ding, P.* Enhanced thermal conductive and mechanical properties of thermoresponsive polymeric composites: Influence of 3D interconnected boron nitride network supported by polyurethane@polydopamine skeleton. Composites Science And Technology 2021, 208, 108779. DOI: https://doi.org/10.1016/j.compscitech.2021.108779
(19) Jiang, F.; Song, N.; Ouyang, R.; Ding, P.* Wall Density-Controlled Thermal Conductive and Mechanical Properties of Three-Dimensional Vertically Aligned Boron Nitride Network-Based Polymeric Composites. ACS Applied Materials & Interfaces 2021, 13 (6), 7556-7566. DOI: https://doi.org/10.1021/acsami.0c22702
(20) Guo, H.; Xu, T.; Zhou, S.; Jiang, F.; Jin, L.; Song, N.; Ding, P.* A technique engineered for improving thermal conductive properties of polyamide-6 composites via hydroxylated boron nitride masterbatch-based melt blending. Composites Part B: Engineering 2021, 212, 108716. DOI: https://doi.org/10.1016/j.compositesb.2021.108716
(21) Chen, F.; Wang, J.; Guo, Z.; Jiang, F.; Ouyang, R.; Ding, P.* Machine Learning and Structural Design to Optimize the Flame Retardancy of Polymer Nanocomposites with Graphene Oxide Hydrogen Bonded Zinc Hydroxystannate. ACS Applied Materials & Interfaces 2021, 13 (45), 53425-53438. DOI: 10.1021/acsami.1c12767
(22) Song, N.; Cao, D.; Luo, X.; Wang, Q.; Ding, P.*; Shi, L. Highly thermally conductive polypropylene/graphene composites for thermal management. Composites Part A: Applied Science and Manufacturing 2020, 135, 105912. DOI: https://doi.org/10.1016/j.compositesa.2020.105912
(23) Jiang, F.; Cui, X.; Song, N.; Shi, L.; Ding, P.* Synergistic effect of functionalized graphene/boron nitride on the thermal conductivity of polystyrene composites. Composites Communications 2020, 100350. DOI: https://doi.org/10.1016/j.coco.2020.04.016
(24) Zhou, S.; Xu, T.; Jiang, F.; Song, N.; Shi, L.; Ding, P.* High thermal conductivity property of polyamide-imide/boron nitride composite films by doping boron nitride quantum dots. Journal of Materials Chemistry C 2019, 7 (44), 13896-13903. DOI: https://doi.org/10.1039/c9tc04381k
(25) Xu, T.; Zhou, S.; Cui, S.; Song, N.; Shi, L.; Ding, P.* Three-dimensional carbon fiber-graphene network for improved thermal conductive properties of polyamide-imide composites. Composites Part B: Engineering 2019, 107495. DOI: https://doi.org/10.1016/j.compositesb.2019.107495
(26) Jiang, F.; Cui, S.; Rungnim, C.; Song, N.; Shi, L.; Ding, P.* Control of a Dual-Cross-Linked Boron Nitride Framework and the Optimized Design of the Thermal Conductive Network for Its Thermoresponsive Polymeric Composites. Chemistry of Materials 2019, 31 (18), 7686-7695. DOI: https://doi.org/10.1021/acs.chemmater.9b02551
(27) Cui, S.; Jiang, F.; Song, N.; Shi, L.; Ding, P.* Flexible Films for Smart Thermal Management: Influence of Structure Construction of a Two-Dimensional Graphene Network on Active Heat Dissipation Response Behavior. ACS Applied Materials & Interfaces 2019, 11 (33), 30352-30359. DOI: https://doi.org/10.1021/acsami.9b10538
(28) Song, N.; Pan, H.; Liang, X.; Cao, D.; Shi, L.-Y.; Ding, P.* Structural design of multilayer thermally conductive nanofibrillated cellulose hybrid film with electrical insulating and antistatic property. Journal of Materials Chemistry C 2018, 6 (26), 7085-7091. DOI: https://doi.org/10.1039/C8TC01277F
(29) Song, N.; Cao, D.; Luo, X.; Guo, Y.; Gu, J.; Ding, P.* Aligned cellulose/nanodiamond plastics with high thermal conductivity. Journal of Materials Chemistry C 2018, 6 (48), 13108-13113. DOI: https://doi.org/10.1039/C8TC04309D
(30) Jiang, F.; Cui, S.; Song, N.; Shi, L.; Ding, P.* Hydrogen Bond-Regulated Boron Nitride Network Structures for Improved Thermal Conductive Property of Polyamide-imide Composites. ACS Applied Materials & Interfaces 2018, 10 (19), 16812-16821. DOI: https://doi.org/10.1021/acsami.8b03522
(31) Chen, L.; Song, N.; Shi, L.; Ding, P.* Anisotropic Thermally Conductive Composite with Wood-derived Carbon Scaffolds. Composites Part A: Applied Science and Manufacturing 2018, 112, 18-24. DOI: https://doi.org/10.1016/j.compositesa.2018.05.023
(32) Chen, L.; Hou, X.; Song, N.; Shi, L.; Ding, P.* Cellulose/graphene bioplastic for thermal management: Enhanced isotropic thermally conductive property by three-dimensional interconnected graphene aerogel. Composites Part A: Applied Science and Manufacturing 2018, 107 (1), 189-196. DOI: https://doi.org/10.1016/j.compositesa.2017.12.014
(33) Song, N.; Pan, H.; Hou, X.; Cui, S.; Shi, L.; Ding, P.* Enhancement of thermal conductivity in polyamide-6/graphene composites via a "bridge effect" of silicon carbide whiskers. Rsc Advances 2017, 7 (73), 46306-46312. DOI: https://doi.org/10.1039/C7RA09094C
(34) Song, N.; Jiao, D.; Cui, S.; Hou, X.; Ding, P.*; Shi, L. Highly Anisotropic Thermal Conductivity of Layer-by-Layer Assembled Nanofibrillated Cellulose/Graphene Nanosheets Hybrid Films for Thermal Management. ACS Applied Materials & Interfaces 2017, 9 (3), 2924. DOI: https://doi.org/10.1021/acsami.6b11979
(35) Song, N.; Hou, X.; Cui, S.; Ba, C.; Jiao, D.; Ding, P.*; Shi, L. Polycarbonate composites: Effect of filler type and melt-blending process on the light diffusion properties. Polymer Engineering & Science 2017, 57 (4), 374-380. DOI: https://doi.org/10.1002/pen.24432
(36) Song, N.; Hou, X.; Chen, L.; Cui, S.; Shi, L.; Ding, P.* A Green Plastic Constructed from Cellulose and Functionalized Graphene with High Thermal Conductivity. ACS Applied Materials & Interfaces 2017, 9 (21), 17914-17922. DOI: https://doi.org/10.1021/acsami.7b02675
(37) Song, N.; Cui, S.; Jiao, D.; Hou, X.; Ding, P.*; Shi, L. Layered nanofibrillated cellulose hybrid films as flexible lateral heat spreaders: The effect of graphene defect. Carbon 2017, 115, 338-346. DOI: http://dx.doi.org/10.1016/j.carbon.2017.01.017
(最后更新日期:2024.03.01)
丁鹏
姓名:丁鹏
职务/职称:研究员/伟长学者特聘教授/纳米中心支部书记
邮箱:dingpeng@t.shu.edu.cn
电话:021-66136025
Web: https://www.scholarmate.com/P/U7Br2u
https://www.researchgate.net/profile/Peng_Ding4
研究领域
1)高分子复合材料功能化与应用;
2)人工智能与高分子复合材料研发;
3)废旧塑料低碳再生及资源化。
教育与工作经历
丁鹏,博士,上海大学研究员/伟长学者特聘教授/纳米中心支部书记,上海市优秀技术带头人,江苏省双创人才。
毕业于中国科学技术大学高分子专业,一直致力于高分子复合材料相关的基础研究、技术开发和成果转化工作。是中国复合材料学会导热专委会副秘书长、上海市新材料产业发展战略咨询专家委员会特聘专家、长三角改性塑料联盟副秘书长、上海塑料工程技术学会副会长、塑料绿色智造创新联合体副会长兼秘书长。《塑料工业》、《上海塑料》、《塑料助剂》编委。
作为首席科学家,负责国家重点研发计划项目2项,同时承担国家自然基金面上项目、省部级重点/重大项目和企业委托项目等20余项。发表论文70余篇,篇均引用超50次;参与国家标准2项(第一起草人);公开发明专利70余项,授权30余项。入选2023“全球Top 2%顶尖科学家”榜单。科研成果得到央视《新闻联播》、《经济半小时》、搜狐等媒体关注。
获得2013年上海市技术发明二等奖(第一完成人)、2014年上海产学研合作优秀项目三等奖(负责人)、2008年上海市科技进步一等奖(主要完成人)、2010年上海市技术发明二等奖(主要完成人)、上海市育才奖、上海市人才发展基金等。
近五年主持的部分科研项目
1) 科技部,国家重点研发计划重点专项项目,知识与数据双驱动的树脂基复合材料智能设计共性关键技术研发与空间应用,2022-11 至 2025-10,在研,主持;
2) 科技部,国家重点研发计划重点专项项目,废旧塑料的清洁增值再生技术开发及在5G、汽车领域的应用示范,2020-09 至 2021-11,结题,主持;
3) 国家自然科学基金委员会,面上项目,智能导热高分子复合材料结构构筑及主动热管理作用机理研究,2021-01 至 2024-12,在研,主持;
4) 云南省科技厅,云南省新材料重大专项,基于高分子材料应用的锡基功能助剂制备关键技术研发(子任务),2023-01 至 2025-12,在研,主持;
5) 云南省科技厅,云南省稀贵金属材料基因工程重大项目,锡铟材料基因工程专用数据库平台建设及示范应用(子课题),2020-01 至 2022-12,在研,主持;
6) 上海市科委,上海市优秀技术带头人计划,基于多尺度复合技术的超高韧耐温高分子复合材料规模化制备与应用,2017-05 至 2020-04,结题,主持;
7) 产学研合作项目20余项。
代表性学术论文
(1) Zhou, S.; Xu, T.; Song, N.; Dai, J.; Qian, G.; Ding, P.* Oriented BN/BNNT heterostructure constructed by interface engineering strategy for polyamide-imide composite film with advanced flexibility and thermally conductive properties. Chemical Engineering Journal 2024, 148653. DOI: https://doi.org/10.1016/j.cej.2024.148653
(2) Zhang, Y.; Zheng, Z.; Chen, F.; Li, M.; Ding, P.*; Lu, W. Accelerating the discovery of N-annulated perylene organic sensitizers via an interpretable machine learning model. Journal of Molecular Structure 2024, 1296, 136855. DOI: https://doi.org/10.1016/j.molstruc.2023.136855
(3) Xing, W.; Hongye, W.; Yifei, G.; Dong, F.; Ding, P.; Qian, L.; Quan, Q. Graph neural networks for molecular and material representation. Journal of Materials Informatics 2023, 3 (2), 12. DOI: https://doi.org/10.20517/jmi.2023.10
(4) Li, X.; Xu, T. L.; Cao, W. J.; Wang, M. H.; Chen, F. Q.; Jin, L. Y.; Song, N.; Sun, S.; Ding, P.* Graphene/carbon fiber network constructed by co-carbonization strategy for functional integrated polyimide composites with enhanced electromagnetic shielding and thermal conductive properties. Chemical Engineering Journal 2023, 464, 9. DOI: https://doi.org/10.1016/j.cej.2023.142595
(5) Jiang, F.; Li, Y. T.; Ye, M. H.; Chen, X. L.; Shen, Y. F.; Ding, P.*; Yang, L. Hierarchically multifunctional thermally conductive Boron Nitride/ Polyurethane fibrous membranes via constructing alternating multi-layer orientation structure. Composites Part a-Applied Science And Manufacturing 2023, 168, 10. DOI: https://doi.org/10.1016/j.compositesa.2023.107498
(6) Chen, F. Q.; Guo, Z.; Wang, J. H.; Ouyang, R. H.; Ma, D. P.; Gao, P.; Pan, F.; Ding, P.* Accelerated feasible screening of flame-retardant polymeric composites using data-driven multi-objective optimization. Computational Materials Science 2023, 230, 8. DOI: https://doi.org/10.1016/j.commatsci.2023.112479
(7) Chen, F.; Weng, L.; Wang, J.; Wu, P.; Ma, D.; Pan, F.; Ding, P.* An adaptive framework to accelerate optimization of high flame retardant composites using machine learning. Composites Science And Technology 2023, 231, 109818. DOI: https://doi.org/10.1016/j.compscitech.2022.109818
(8) Zhou, S.; Xu, T.; Jin, L.; Song, N.; Ding, P.* Ultraflexible polyamide-imide films with simultaneously improved thermal conductive and mechanical properties: Design of assembled well-oriented boron nitride nanosheets. Composites Science And Technology 2022, 219, 109259. DOI: https://doi.org/10.1016/j.compscitech.2022.109259
(9) Wu, X.; Chen, C.; Li, P.; Zhong, M.; Wang, J.; Qian, Q.; Ding, P.; Yao, J.; Guo, Y. FTAP: Feature Transferring Autonomous Machine Learning Pipeline. Information Sciences 2022, 593C, 385-397. DOI: https://doi.org/10.1016/j.ins.2022.02.006
(10) Song, N.; Wang, P.; Jin, L.; Zhang, F.; Wang, Z.; Ding, P.* Tunable oriented cellulose/BNNSs films designed for high-performance thermal management. Chemical Engineering Journal 2022, 437, 135404. DOI: https://doi.org/10.1016/j.cej.2022.135404
(11) Jin, L. Y.; Cao, W. J.; Wang, P.; Song, N.; Ding, P.* Interconnected MXene/Graphene Network Constructed by Soft Template for Multi-Performance Improvement of Polymer Composites. Nano-Micro Letters 2022, 14 (1), 17. DOI: https://doi.org/10.1007/s40820-022-00877-7
(12) Jin, L.; Wang, P.; Cao, W.; Song, N.; Ding, P.* Isolated Solid Wall-Assisted Thermal Conductive Performance of Three-Dimensional Anisotropic MXene/Graphene Polymeric Composites. ACS Applied Materials & Interfaces 2022, 14 (1), 1747-1756. DOI: https://doi.org/10.1021/acsami.1c20267
(13) Jiao, D. J.; Song, N.; Ding, P.*; Shi, L. Y. Enhanced thermal conductivity in oriented cellulose nanofibril/graphene composites via interfacial engineering. Composites Communications 2022, 31, 7. DOI: https://doi.org/10.1016/j.coco.2022.101101
(14) Zhou, S.; Xu, T.; Jiang, F.; Song, N.; Ding, P.* High-Performance Polyamide-imide Films: Effect of Functionalization Degree of BN Nanosheets. Composites Science And Technology 2021, 213, 108907. DOI: https://doi.org/10.1016/j.compscitech.2021.108907
(15) Xu, T.; Zhou, S.; Jiang, F.; Song, N.; Shi, L.; Ding, P.* Polyamide composites with improved thermal conductivity for effective thermal management: The three-dimensional vertically aligned carbon network. Composites Part B: Engineering 2021, 224, 109205. DOI: https://doi.org/10.1016/j.compositesb.2021.109205
(16) Song, Y.; Jiang, F.; Song, N.; Shi, L.; Ding, P.* Multilayered Structural Design of Flexible Films for Smart Thermal Management. Composites Part A: Applied Science and Manufacturing 2021, 141, 106222. DOI: https://doi.org/10.1016/j.compositesa.2020.106222
(17) Song, N.; Wang, Q.; Jiao, D.; Pan, H.; Shi, L.; Ding, P.* Highly thermally conductive SiO2-coated NFC/BNNS hybrid films with water resistance. Composites Part A: Applied Science and Manufacturing 2021, 143, 106261. DOI: https://doi.org/10.1016/j.compositesa.2020.106261
(18) Jiang, F.; Zhou, S.; Xu, T.; Song, N.; Ding, P.* Enhanced thermal conductive and mechanical properties of thermoresponsive polymeric composites: Influence of 3D interconnected boron nitride network supported by polyurethane@polydopamine skeleton. Composites Science And Technology 2021, 208, 108779. DOI: https://doi.org/10.1016/j.compscitech.2021.108779
(19) Jiang, F.; Song, N.; Ouyang, R.; Ding, P.* Wall Density-Controlled Thermal Conductive and Mechanical Properties of Three-Dimensional Vertically Aligned Boron Nitride Network-Based Polymeric Composites. ACS Applied Materials & Interfaces 2021, 13 (6), 7556-7566. DOI: https://doi.org/10.1021/acsami.0c22702
(20) Guo, H.; Xu, T.; Zhou, S.; Jiang, F.; Jin, L.; Song, N.; Ding, P.* A technique engineered for improving thermal conductive properties of polyamide-6 composites via hydroxylated boron nitride masterbatch-based melt blending. Composites Part B: Engineering 2021, 212, 108716. DOI: https://doi.org/10.1016/j.compositesb.2021.108716
(21) Chen, F.; Wang, J.; Guo, Z.; Jiang, F.; Ouyang, R.; Ding, P.* Machine Learning and Structural Design to Optimize the Flame Retardancy of Polymer Nanocomposites with Graphene Oxide Hydrogen Bonded Zinc Hydroxystannate. ACS Applied Materials & Interfaces 2021, 13 (45), 53425-53438. DOI: 10.1021/acsami.1c12767
(22) Song, N.; Cao, D.; Luo, X.; Wang, Q.; Ding, P.*; Shi, L. Highly thermally conductive polypropylene/graphene composites for thermal management. Composites Part A: Applied Science and Manufacturing 2020, 135, 105912. DOI: https://doi.org/10.1016/j.compositesa.2020.105912
(23) Jiang, F.; Cui, X.; Song, N.; Shi, L.; Ding, P.* Synergistic effect of functionalized graphene/boron nitride on the thermal conductivity of polystyrene composites. Composites Communications 2020, 100350. DOI: https://doi.org/10.1016/j.coco.2020.04.016
(24) Zhou, S.; Xu, T.; Jiang, F.; Song, N.; Shi, L.; Ding, P.* High thermal conductivity property of polyamide-imide/boron nitride composite films by doping boron nitride quantum dots. Journal of Materials Chemistry C 2019, 7 (44), 13896-13903. DOI: https://doi.org/10.1039/c9tc04381k
(25) Xu, T.; Zhou, S.; Cui, S.; Song, N.; Shi, L.; Ding, P.* Three-dimensional carbon fiber-graphene network for improved thermal conductive properties of polyamide-imide composites. Composites Part B: Engineering 2019, 107495. DOI: https://doi.org/10.1016/j.compositesb.2019.107495
(26) Jiang, F.; Cui, S.; Rungnim, C.; Song, N.; Shi, L.; Ding, P.* Control of a Dual-Cross-Linked Boron Nitride Framework and the Optimized Design of the Thermal Conductive Network for Its Thermoresponsive Polymeric Composites. Chemistry of Materials 2019, 31 (18), 7686-7695. DOI: https://doi.org/10.1021/acs.chemmater.9b02551
(27) Cui, S.; Jiang, F.; Song, N.; Shi, L.; Ding, P.* Flexible Films for Smart Thermal Management: Influence of Structure Construction of a Two-Dimensional Graphene Network on Active Heat Dissipation Response Behavior. ACS Applied Materials & Interfaces 2019, 11 (33), 30352-30359. DOI: https://doi.org/10.1021/acsami.9b10538
(28) Song, N.; Pan, H.; Liang, X.; Cao, D.; Shi, L.-Y.; Ding, P.* Structural design of multilayer thermally conductive nanofibrillated cellulose hybrid film with electrical insulating and antistatic property. Journal of Materials Chemistry C 2018, 6 (26), 7085-7091. DOI: https://doi.org/10.1039/C8TC01277F
(29) Song, N.; Cao, D.; Luo, X.; Guo, Y.; Gu, J.; Ding, P.* Aligned cellulose/nanodiamond plastics with high thermal conductivity. Journal of Materials Chemistry C 2018, 6 (48), 13108-13113. DOI: https://doi.org/10.1039/C8TC04309D
(30) Jiang, F.; Cui, S.; Song, N.; Shi, L.; Ding, P.* Hydrogen Bond-Regulated Boron Nitride Network Structures for Improved Thermal Conductive Property of Polyamide-imide Composites. ACS Applied Materials & Interfaces 2018, 10 (19), 16812-16821. DOI: https://doi.org/10.1021/acsami.8b03522
(31) Chen, L.; Song, N.; Shi, L.; Ding, P.* Anisotropic Thermally Conductive Composite with Wood-derived Carbon Scaffolds. Composites Part A: Applied Science and Manufacturing 2018, 112, 18-24. DOI: https://doi.org/10.1016/j.compositesa.2018.05.023
(32) Chen, L.; Hou, X.; Song, N.; Shi, L.; Ding, P.* Cellulose/graphene bioplastic for thermal management: Enhanced isotropic thermally conductive property by three-dimensional interconnected graphene aerogel. Composites Part A: Applied Science and Manufacturing 2018, 107 (1), 189-196. DOI: https://doi.org/10.1016/j.compositesa.2017.12.014
(33) Song, N.; Pan, H.; Hou, X.; Cui, S.; Shi, L.; Ding, P.* Enhancement of thermal conductivity in polyamide-6/graphene composites via a "bridge effect" of silicon carbide whiskers. Rsc Advances 2017, 7 (73), 46306-46312. DOI: https://doi.org/10.1039/C7RA09094C
(34) Song, N.; Jiao, D.; Cui, S.; Hou, X.; Ding, P.*; Shi, L. Highly Anisotropic Thermal Conductivity of Layer-by-Layer Assembled Nanofibrillated Cellulose/Graphene Nanosheets Hybrid Films for Thermal Management. ACS Applied Materials & Interfaces 2017, 9 (3), 2924. DOI: https://doi.org/10.1021/acsami.6b11979
(35) Song, N.; Hou, X.; Cui, S.; Ba, C.; Jiao, D.; Ding, P.*; Shi, L. Polycarbonate composites: Effect of filler type and melt-blending process on the light diffusion properties. Polymer Engineering & Science 2017, 57 (4), 374-380. DOI: https://doi.org/10.1002/pen.24432
(36) Song, N.; Hou, X.; Chen, L.; Cui, S.; Shi, L.; Ding, P.* A Green Plastic Constructed from Cellulose and Functionalized Graphene with High Thermal Conductivity. ACS Applied Materials & Interfaces 2017, 9 (21), 17914-17922. DOI: https://doi.org/10.1021/acsami.7b02675
(37) Song, N.; Cui, S.; Jiao, D.; Hou, X.; Ding, P.*; Shi, L. Layered nanofibrillated cellulose hybrid films as flexible lateral heat spreaders: The effect of graphene defect. Carbon 2017, 115, 338-346. DOI: http://dx.doi.org/10.1016/j.carbon.2017.01.017
(最后更新日期:2024.03.01)