数学系Seminar第2167讲 复杂非线性系统的保正/保界格式

创建时间:  2021/10/26  龚惠英   浏览次数:   返回

报告题目 (Title):Positivity/bound preserving schemes for complex nonlinear systems (复杂非线性系统的保正/保界格式)

报告人 (Speaker): 沈捷教授(美国普渡大学)

报告时间 (Time):2021年10月27日(周三) 14:00

报告地点 (Place):校本部G507

邀请人(Inviter):李常品

主办部门:理学院数学系

报告摘要:Solutions for a large class of partial differential equations (PDEs) arising from sciences and engineering applications are required to be positive to be positive or within a specified bound. It is of critical importance that their numerical approximations preserve the positivity/bound at the discrete level, as violation of the positivity/bound preserving may render the discrete problems ill posed. I will review the existing approaches for constructing positivity/bound preserving schemes, and then present several efficient and accurate approaches which are relatively easy to implement and can be combined with most spatial discretization.

上一条:今日化学系列报告第268讲 介孔半导体金属氧化物气敏材料

下一条:数学系Seminar第2166讲 耗散和保守非线性系统的SAV方法


数学系Seminar第2167讲 复杂非线性系统的保正/保界格式

创建时间:  2021/10/26  龚惠英   浏览次数:   返回

报告题目 (Title):Positivity/bound preserving schemes for complex nonlinear systems (复杂非线性系统的保正/保界格式)

报告人 (Speaker): 沈捷教授(美国普渡大学)

报告时间 (Time):2021年10月27日(周三) 14:00

报告地点 (Place):校本部G507

邀请人(Inviter):李常品

主办部门:理学院数学系

报告摘要:Solutions for a large class of partial differential equations (PDEs) arising from sciences and engineering applications are required to be positive to be positive or within a specified bound. It is of critical importance that their numerical approximations preserve the positivity/bound at the discrete level, as violation of the positivity/bound preserving may render the discrete problems ill posed. I will review the existing approaches for constructing positivity/bound preserving schemes, and then present several efficient and accurate approaches which are relatively easy to implement and can be combined with most spatial discretization.

上一条:今日化学系列报告第268讲 介孔半导体金属氧化物气敏材料

下一条:数学系Seminar第2166讲 耗散和保守非线性系统的SAV方法