数学系Seminar第2043期 Isomorphism between the R-matrix and Drinfeld presentations of quantum affine algebras

创建时间:  2020/11/06  龚惠英   浏览次数:   返回

报告主题:Isomorphism between the R-matrix and Drinfeld presentations of quantum affine algebras

报 告 人:刘明 教授 (华南理工大学)

报告时间:2020年11月7日(周六) 9:00—10:30

参会方式:腾讯会议

会议ID:413 835 559

会议密码:201101

主办部门:理学院数学系

报告摘要: An explicit isomorphism between the R-matrix and Drinfeld presentations of the quantum affine algebra in type A was given by Ding and I. Frenkel (1993). In this talk, we will show that this result can be extended to types B, C and D. In all classical types the Gauss decomposition of the generator matrix in the R-matrix presentation yields the Drinfeld generators. To prove that the resulting map is an isomorphism we follow the work of E. Frenkel and Mukhin (2002) in type A and employ the universal R-matrix to construct the inverse map. A key role in our construction is played by

an embedding theorem which allows us to consider the quantum affine algebra of rank n-1 in the R-matrix presentation as a subalgebra of the corresponding algebra of rank n of the same type.


欢迎教师、学生参加!

上一条:数学系Seminar第2044期 参数化最优控制理论及其在无人系统自主控制中的应用

下一条:数学系Seminar第2042期 Algorithmic Design for Big Data Related Optimization


数学系Seminar第2043期 Isomorphism between the R-matrix and Drinfeld presentations of quantum affine algebras

创建时间:  2020/11/06  龚惠英   浏览次数:   返回

报告主题:Isomorphism between the R-matrix and Drinfeld presentations of quantum affine algebras

报 告 人:刘明 教授 (华南理工大学)

报告时间:2020年11月7日(周六) 9:00—10:30

参会方式:腾讯会议

会议ID:413 835 559

会议密码:201101

主办部门:理学院数学系

报告摘要: An explicit isomorphism between the R-matrix and Drinfeld presentations of the quantum affine algebra in type A was given by Ding and I. Frenkel (1993). In this talk, we will show that this result can be extended to types B, C and D. In all classical types the Gauss decomposition of the generator matrix in the R-matrix presentation yields the Drinfeld generators. To prove that the resulting map is an isomorphism we follow the work of E. Frenkel and Mukhin (2002) in type A and employ the universal R-matrix to construct the inverse map. A key role in our construction is played by

an embedding theorem which allows us to consider the quantum affine algebra of rank n-1 in the R-matrix presentation as a subalgebra of the corresponding algebra of rank n of the same type.


欢迎教师、学生参加!

上一条:数学系Seminar第2044期 参数化最优控制理论及其在无人系统自主控制中的应用

下一条:数学系Seminar第2042期 Algorithmic Design for Big Data Related Optimization