报告题目 (Title):低秩逼近:列选主元随机 QR 算法及稀疏投影、高效低遍历相关技术
报告人 (Speaker):冯月华 副教授(上海工程技术大学)
报告时间 (Time):2026年1月15日(周四)10:30
报告地点 (Place):校本部GJ303
邀请人(Inviter):刘巧华
主办部门:理学院数学系
报告摘要:
In this talk, I will present improved algorithms for low-rank matrix approximation. Existing randomized methods—such as Randomized QR with Column Pivoting (RQRCP) and Flip-Flop spectrum-revealing QR (FFSRQR)—offer notable efficiency for large-scale problems but leave room for optimization. We first propose RQRCP-SEM, an enhanced RQRCP variant incorporating sparse projection via a sparse embedding matrix (SEM). Building on RQRCP-SEM and pass-efficient techniques, two pass-efficient FFSRQR-SEM variants are further developed to boost FFSRQR’s performance. Theoretical analyses of approximation error and computational complexity for these new algorithms are provided, with validation through numerical experiments.