数学学科Seminar第2943讲 硬势Boltzmann方程解的时空结构与粒子-流体对偶

创建时间:  2025/11/06  邵奋芬   浏览次数:   返回

报告题目 (Title):Space-time structure and particle-fluid duality of solutions for the Boltzmann equation with hard potentials(硬势Boltzmann方程解的时空结构与粒子-流体对偶)

报告人 (Speaker):王海涛 教授(上海交通大学)

报告时间 (Time):2025年11月13日(周四)15:00

报告地点 (Place):校本部GJ303

邀请人(Inviter):王宇澄

主办部门:理学院数学系

报告摘要:We study the quantitative pointwise behavior of solutions to the Boltzmann equation for hard potentials and Maxwellian molecules. A key challenge in this problem is the loss of velocity weight in linear estimates, which makes standard nonlinear iteration infeasible. To address this, we develop an Enhanced Mixture Lemma, demonstrating that mixing the transport and gain parts of the linearized collision operator can generate arbitrary-order regularity and decay in both space and velocity variables. This allows us to decompose the linearized solution into fluid (with arbitrary regularity and velocity decay) and particle (with rapid space-time decay but loss of velocity decay) components, making it possible to solve the nonlinear problem through this particle–fluid duality.



下一条:数学学科Seminar第2942讲 Rota-Baxter李代数的变形、同调和同伦


数学学科Seminar第2943讲 硬势Boltzmann方程解的时空结构与粒子-流体对偶

创建时间:  2025/11/06  邵奋芬   浏览次数:   返回

报告题目 (Title):Space-time structure and particle-fluid duality of solutions for the Boltzmann equation with hard potentials(硬势Boltzmann方程解的时空结构与粒子-流体对偶)

报告人 (Speaker):王海涛 教授(上海交通大学)

报告时间 (Time):2025年11月13日(周四)15:00

报告地点 (Place):校本部GJ303

邀请人(Inviter):王宇澄

主办部门:理学院数学系

报告摘要:We study the quantitative pointwise behavior of solutions to the Boltzmann equation for hard potentials and Maxwellian molecules. A key challenge in this problem is the loss of velocity weight in linear estimates, which makes standard nonlinear iteration infeasible. To address this, we develop an Enhanced Mixture Lemma, demonstrating that mixing the transport and gain parts of the linearized collision operator can generate arbitrary-order regularity and decay in both space and velocity variables. This allows us to decompose the linearized solution into fluid (with arbitrary regularity and velocity decay) and particle (with rapid space-time decay but loss of velocity decay) components, making it possible to solve the nonlinear problem through this particle–fluid duality.



下一条:数学学科Seminar第2942讲 Rota-Baxter李代数的变形、同调和同伦