数学学科Seminar第2942讲 Rota-Baxter李代数的变形、同调和同伦

创建时间:  2025/11/06  邵奋芬   浏览次数:   返回

报告题目 (Title):Deformations, cohomologies and homotopies of Rota-Baxter Lie algebras(Rota-Baxter李代数的变形、同调和同伦)

报告人 (Speaker):生云鹤教授 (吉林大学)

报告时间 (Time):2025年11月14日(周五)10:00

报告地点 (Place):校本部GJ303

邀请人(Inviter):张红莲教授

主办部门:理学院数学系

报告摘要:We determine the L-infty-algebra that controls deformations of a relative Rota-Baxter Lie algebra and show that it is an extension of the dg Lie algebra controlling deformations of the underlying LieRep pair by the dg Lie algebra controlling deformations of the relative Rota-Baxter operator. Consequently, we define the cohomology of relative Rota-Baxter Lie algebras and relate it to their infinitesimal deformations. The notion of a homotopy relative Rota-Baxter Lie algebra is introduced. We show that a class of homotopy relative Rota-Baxter Lie algebras is intimately related to pre-Lie-infty algebras. This talk is based on joint works with Chengming Bai, Li Guo, Andrey Lazarev and Rong Tang.

上一条:数学学科Seminar第2943讲 硬势Boltzmann方程解的时空结构与粒子-流体对偶

下一条:量子科技研究院Seminar第79讲暨物理学科Seminar第770讲 自旋玻璃问题的精确结果


数学学科Seminar第2942讲 Rota-Baxter李代数的变形、同调和同伦

创建时间:  2025/11/06  邵奋芬   浏览次数:   返回

报告题目 (Title):Deformations, cohomologies and homotopies of Rota-Baxter Lie algebras(Rota-Baxter李代数的变形、同调和同伦)

报告人 (Speaker):生云鹤教授 (吉林大学)

报告时间 (Time):2025年11月14日(周五)10:00

报告地点 (Place):校本部GJ303

邀请人(Inviter):张红莲教授

主办部门:理学院数学系

报告摘要:We determine the L-infty-algebra that controls deformations of a relative Rota-Baxter Lie algebra and show that it is an extension of the dg Lie algebra controlling deformations of the underlying LieRep pair by the dg Lie algebra controlling deformations of the relative Rota-Baxter operator. Consequently, we define the cohomology of relative Rota-Baxter Lie algebras and relate it to their infinitesimal deformations. The notion of a homotopy relative Rota-Baxter Lie algebra is introduced. We show that a class of homotopy relative Rota-Baxter Lie algebras is intimately related to pre-Lie-infty algebras. This talk is based on joint works with Chengming Bai, Li Guo, Andrey Lazarev and Rong Tang.

上一条:数学学科Seminar第2943讲 硬势Boltzmann方程解的时空结构与粒子-流体对偶

下一条:量子科技研究院Seminar第79讲暨物理学科Seminar第770讲 自旋玻璃问题的精确结果