数学学科Seminar第2835讲 n-正则树有限维表示的不变量

创建时间:  2025/05/07  邵奋芬   浏览次数:   返回

报告题目 (Title):Some Invariants of finite-dimensional representations of n-regular tree T(n) (n-正则树有限维表示的不变量)

报告人 (Speaker):刘杰 (广东工业大学)

报告时间 (Time):2025年5月8日(周四) 上午 10:30

报告地点 (Place):校本部GJ303

邀请人(Inviter):孟沆洋

主办部门:理学院数学系

报告摘要:Since it is impossible to classify all the representations of the generalized Kronecker quiver K(n), it is desirable to find the invariants. Claus Ringel once introduced two invariants for the covering quiver T(n) of K(n) in 2018: center and radius, and he wanted to know what would happen if we used the reflection functor to act on them. In this talk, we answer his question and we classify all the elementary representations of K(n). Moreover, we follow Carlson, Friedlander and Pevtsova’s definition of modules of constant Jordan type, and we show that there are only two types of modules of constant Jordan type in the regular component of T(n).

上一条:量子科技研究院Seminar 第59讲暨物理学科Seminar第737讲 修正基于平面波的密度泛函理论方法的研究

下一条:上海大学核心数学研究所——几何与分析综合报告第106讲 论里奇二次喷流(或芬斯勒)空间


数学学科Seminar第2835讲 n-正则树有限维表示的不变量

创建时间:  2025/05/07  邵奋芬   浏览次数:   返回

报告题目 (Title):Some Invariants of finite-dimensional representations of n-regular tree T(n) (n-正则树有限维表示的不变量)

报告人 (Speaker):刘杰 (广东工业大学)

报告时间 (Time):2025年5月8日(周四) 上午 10:30

报告地点 (Place):校本部GJ303

邀请人(Inviter):孟沆洋

主办部门:理学院数学系

报告摘要:Since it is impossible to classify all the representations of the generalized Kronecker quiver K(n), it is desirable to find the invariants. Claus Ringel once introduced two invariants for the covering quiver T(n) of K(n) in 2018: center and radius, and he wanted to know what would happen if we used the reflection functor to act on them. In this talk, we answer his question and we classify all the elementary representations of K(n). Moreover, we follow Carlson, Friedlander and Pevtsova’s definition of modules of constant Jordan type, and we show that there are only two types of modules of constant Jordan type in the regular component of T(n).

上一条:量子科技研究院Seminar 第59讲暨物理学科Seminar第737讲 修正基于平面波的密度泛函理论方法的研究

下一条:上海大学核心数学研究所——几何与分析综合报告第106讲 论里奇二次喷流(或芬斯勒)空间