上海大学核心数学研究所——几何与分析综合报告第106讲 论里奇二次喷流(或芬斯勒)空间

创建时间:  2025/05/07  邵奋芬   浏览次数:   返回

报告题目 (Title):On Ricci-quadratic sprays (or Finsler) spaces

中文标题:论里奇二次喷流(或芬斯勒)空间

报告人 (Speaker):莫小欢(北京大学)

报告时间 (Time):2025年5月7日(周三) 13:30

报告地点 (Place):校本部GJ303

邀请人(Inviter):席东盟、李晋、吴加勇

主办部门:理学院数学系

报告摘要:In this lecture, we discuss Ricci-quadratic sprays (or Finsler) spaces which are non-trivial in the sense that these sprays (or Finsler) spaces are not strongly Ricci-quadratic. First, we find infinitely many such sprays on an open domain in Rn which are not induced by (not necessary positive definite) Finsler metrics. Then we explicitly construct a lot of non-trivial Ricci-quadratic Finsler metrics by finding the PDE characterization for the spherically symmetric Finsler metrics to be Ricci-quadratic and strongly Ricci-quadratic.

上一条:数学学科Seminar第2835讲 n-正则树有限维表示的不变量

下一条:量子科技研究院Seminar第58讲暨物理学科Seminar第736讲 依赖可观测量的量子噪声缓释


上海大学核心数学研究所——几何与分析综合报告第106讲 论里奇二次喷流(或芬斯勒)空间

创建时间:  2025/05/07  邵奋芬   浏览次数:   返回

报告题目 (Title):On Ricci-quadratic sprays (or Finsler) spaces

中文标题:论里奇二次喷流(或芬斯勒)空间

报告人 (Speaker):莫小欢(北京大学)

报告时间 (Time):2025年5月7日(周三) 13:30

报告地点 (Place):校本部GJ303

邀请人(Inviter):席东盟、李晋、吴加勇

主办部门:理学院数学系

报告摘要:In this lecture, we discuss Ricci-quadratic sprays (or Finsler) spaces which are non-trivial in the sense that these sprays (or Finsler) spaces are not strongly Ricci-quadratic. First, we find infinitely many such sprays on an open domain in Rn which are not induced by (not necessary positive definite) Finsler metrics. Then we explicitly construct a lot of non-trivial Ricci-quadratic Finsler metrics by finding the PDE characterization for the spherically symmetric Finsler metrics to be Ricci-quadratic and strongly Ricci-quadratic.

上一条:数学学科Seminar第2835讲 n-正则树有限维表示的不变量

下一条:量子科技研究院Seminar第58讲暨物理学科Seminar第736讲 依赖可观测量的量子噪声缓释