数学学科Seminar第2381讲 关于Blaszak和Szum的一个特殊二维晶格:矩阵积分解和孤子

创建时间:  2023/05/16  龚惠英   浏览次数:   返回

报告题目 (Title):关于Blaszak和Szum的一个特殊二维晶格:矩阵积分解和孤子(On a special two-dimensional lattice by Blaszak and Szum: matrix integral solutions and solitons)

报告人 (Speaker): 虞国富 教授(上海交通大学)

报告时间 (Time):2023年5月18日(周四) 15:00

报告地点 (Place):腾讯会议:296 771 815

邀请人(Inviter):夏铁成 教授

主办部门:理学院数学系

报告摘要:In this talk, we study a special two-dimensional lattice equation proposed by Blaszak and Szum. In the first part, we present matrix integral solutions to the lattice equation and its pfaffianized version. In the second part, we derive solitons, breathers and rational solutions to the lattice equation both on the constant and periodic background. These solutions are given in terms of determinants. In particular, we find three types of breather solutions, including Kuznetsov-Ma breather, Akhmediev breather and general one. By introducing two differential operators applied to the soliton solutions, we obtain rational solutions in terms of Schur polynomials. We demonstrate that rational solutions can exhibit algebraic solitons and lump solitons. By taking higher-order differential operators, we present multiple and higher-order rational solutions. The dynamical behaviors of these obtained solutions are investigated and analyzed with plots.

上一条:数学学科Seminar第2382讲 对数薛定谔方程的隐式-显式和时间分裂格式分析

下一条:数学学科Seminar第2380讲 辐射水动力系统近似方程的研究


数学学科Seminar第2381讲 关于Blaszak和Szum的一个特殊二维晶格:矩阵积分解和孤子

创建时间:  2023/05/16  龚惠英   浏览次数:   返回

报告题目 (Title):关于Blaszak和Szum的一个特殊二维晶格:矩阵积分解和孤子(On a special two-dimensional lattice by Blaszak and Szum: matrix integral solutions and solitons)

报告人 (Speaker): 虞国富 教授(上海交通大学)

报告时间 (Time):2023年5月18日(周四) 15:00

报告地点 (Place):腾讯会议:296 771 815

邀请人(Inviter):夏铁成 教授

主办部门:理学院数学系

报告摘要:In this talk, we study a special two-dimensional lattice equation proposed by Blaszak and Szum. In the first part, we present matrix integral solutions to the lattice equation and its pfaffianized version. In the second part, we derive solitons, breathers and rational solutions to the lattice equation both on the constant and periodic background. These solutions are given in terms of determinants. In particular, we find three types of breather solutions, including Kuznetsov-Ma breather, Akhmediev breather and general one. By introducing two differential operators applied to the soliton solutions, we obtain rational solutions in terms of Schur polynomials. We demonstrate that rational solutions can exhibit algebraic solitons and lump solitons. By taking higher-order differential operators, we present multiple and higher-order rational solutions. The dynamical behaviors of these obtained solutions are investigated and analyzed with plots.

上一条:数学学科Seminar第2382讲 对数薛定谔方程的隐式-显式和时间分裂格式分析

下一条:数学学科Seminar第2380讲 辐射水动力系统近似方程的研究