数学学科Seminar第2285讲 具有临界初始值的二维Navier-Stokes方程的全离散有限元法的分析

创建时间:  2022/09/05  龚惠英   浏览次数:   返回

报告题目 (Title):Analysis of fully discrete finite element methods for 2D Navier--Stokes equations with critical initial data(具有临界初始值的二维Navier-Stokes方程的全离散有限元法的分析)

报告人 (Speaker): 李步扬 副教授(香港理工大学)

报告时间 (Time):2022年9月9日(周五) 14:00-16:00

报告地点 (Place):线上腾讯会议 (会议 ID:963 935 431)

邀请人(Inviter):李常品、蔡敏

主办部门:理学院数学系

报告摘要:First-order convergence in time and space is proved for a fully discrete semi-implicit finite element method for the two-dimensional Navier--Stokes equations with $L^2$ initial data in convex polygonal domains, without extra regularity assumptions or grid-ratio conditions. The proof utilises the smoothing properties of the Navier--Stokes equations in the analysis of the consistency errors, an appropriate duality argument, and the smallness of the numerical solution in the discrete $L^2(0,t_m;H^1)$ norm when $t_m$ is smaller than some constant. Numerical examples are provided to support the theoretical analysis.

上一条:数学学科Seminar第2286讲 离散方程的约化II

下一条:数学学科Seminar第2284讲 扩散与亚扩散方程高阶向后差分格式的时间并行算法


数学学科Seminar第2285讲 具有临界初始值的二维Navier-Stokes方程的全离散有限元法的分析

创建时间:  2022/09/05  龚惠英   浏览次数:   返回

报告题目 (Title):Analysis of fully discrete finite element methods for 2D Navier--Stokes equations with critical initial data(具有临界初始值的二维Navier-Stokes方程的全离散有限元法的分析)

报告人 (Speaker): 李步扬 副教授(香港理工大学)

报告时间 (Time):2022年9月9日(周五) 14:00-16:00

报告地点 (Place):线上腾讯会议 (会议 ID:963 935 431)

邀请人(Inviter):李常品、蔡敏

主办部门:理学院数学系

报告摘要:First-order convergence in time and space is proved for a fully discrete semi-implicit finite element method for the two-dimensional Navier--Stokes equations with $L^2$ initial data in convex polygonal domains, without extra regularity assumptions or grid-ratio conditions. The proof utilises the smoothing properties of the Navier--Stokes equations in the analysis of the consistency errors, an appropriate duality argument, and the smallness of the numerical solution in the discrete $L^2(0,t_m;H^1)$ norm when $t_m$ is smaller than some constant. Numerical examples are provided to support the theoretical analysis.

上一条:数学学科Seminar第2286讲 离散方程的约化II

下一条:数学学科Seminar第2284讲 扩散与亚扩散方程高阶向后差分格式的时间并行算法