数学学科Seminar第2284讲 扩散与亚扩散方程高阶向后差分格式的时间并行算法

创建时间:  2022/09/05  龚惠英   浏览次数:   返回

报告题目 (Title):A Parallel-in-Time Algorithm for High-Order BDF Discretization for Diffusion and Subdiffusion Equations (扩散与亚扩散方程高阶向后差分格式的时间并行算法)

报告人 (Speaker): 周知 助理教授(香港理工大学)

报告时间 (Time):2022年9月7日(周三) 15:00-17:00

报告地点 (Place):腾讯会议(会议 ID:420 828 754)

邀请人(Inviter):李常品、蔡敏

主办部门:理学院数学系

报告摘要:In this talk, I will present a parallel-in-time algorithm for approximately solving parabolic equations. We apply the k-step backward differentiation formula, and then develop an iterative solver by using the waveform relaxation technique. Each resulting iterate represents a periodic-like system, which could be further solved in parallel by using the diagonalization technique. The convergence of the waveform relaxation iteration is theoretically examined by using the generating function method. The argument could be further applied to the time-fractional subdiffusion equation, whose discretization shares common properties of the standard BDF methods, because of the nonlocality of the fractional differential operator. Some illustrative numerical results will be presented to complement the theoretical analysis.

上一条:数学学科Seminar第2285讲 具有临界初始值的二维Navier-Stokes方程的全离散有限元法的分析

下一条:数学学科Seminar第2283讲 SPDE的变分框架


数学学科Seminar第2284讲 扩散与亚扩散方程高阶向后差分格式的时间并行算法

创建时间:  2022/09/05  龚惠英   浏览次数:   返回

报告题目 (Title):A Parallel-in-Time Algorithm for High-Order BDF Discretization for Diffusion and Subdiffusion Equations (扩散与亚扩散方程高阶向后差分格式的时间并行算法)

报告人 (Speaker): 周知 助理教授(香港理工大学)

报告时间 (Time):2022年9月7日(周三) 15:00-17:00

报告地点 (Place):腾讯会议(会议 ID:420 828 754)

邀请人(Inviter):李常品、蔡敏

主办部门:理学院数学系

报告摘要:In this talk, I will present a parallel-in-time algorithm for approximately solving parabolic equations. We apply the k-step backward differentiation formula, and then develop an iterative solver by using the waveform relaxation technique. Each resulting iterate represents a periodic-like system, which could be further solved in parallel by using the diagonalization technique. The convergence of the waveform relaxation iteration is theoretically examined by using the generating function method. The argument could be further applied to the time-fractional subdiffusion equation, whose discretization shares common properties of the standard BDF methods, because of the nonlocality of the fractional differential operator. Some illustrative numerical results will be presented to complement the theoretical analysis.

上一条:数学学科Seminar第2285讲 具有临界初始值的二维Navier-Stokes方程的全离散有限元法的分析

下一条:数学学科Seminar第2283讲 SPDE的变分框架