数学学科Seminar第2205讲 On well-posedness and decay of strong solutions for 3D incompressible Smectic-A liquid crystal flows

创建时间:  2021/11/22  龚惠英   浏览次数:   返回

报告题目 (Title):On well-posedness and decay of strong solutions for 3D incompressible Smectic-A liquid crystal flows

报告人 (Speaker):Xiaopeng Zhao(赵晓朋) 副 教授(东北大学)

报告时间 (Time):2021年11月21日(周日) 13:30

报告地点 (Place):线上 腾讯会议 ID:782 679 504

邀请人(Inviter):朱佩成

主办部门:理学院数学系

报告摘要: We study a hydrodynamic system that models smectic-A liquid crystal flow in R3. This model consists of the Navier-Stokes equations for fluid velocity coupled with a fourth-order equation for the layer variable. The main purpose is to analyze the well-posedness and asymptotic behavior of strong solutions. We first prove the local well-posedness through the higher order a prior estimates of the solution and Galerkin method. Then we establish the existence of global strong solution provided that the initial data is sufficiently small. Finally, we show the temporary decay estimates for the higher order derivatives of strong solution by using the negative Sobolev norm estimates.

上一条:数学学科Seminar第2206讲 三维外区域上的Navier-Stokes方程

下一条:数学学科Seminar第2204讲 奇异非局部偏微分方程的数值分析


数学学科Seminar第2205讲 On well-posedness and decay of strong solutions for 3D incompressible Smectic-A liquid crystal flows

创建时间:  2021/11/22  龚惠英   浏览次数:   返回

报告题目 (Title):On well-posedness and decay of strong solutions for 3D incompressible Smectic-A liquid crystal flows

报告人 (Speaker):Xiaopeng Zhao(赵晓朋) 副 教授(东北大学)

报告时间 (Time):2021年11月21日(周日) 13:30

报告地点 (Place):线上 腾讯会议 ID:782 679 504

邀请人(Inviter):朱佩成

主办部门:理学院数学系

报告摘要: We study a hydrodynamic system that models smectic-A liquid crystal flow in R3. This model consists of the Navier-Stokes equations for fluid velocity coupled with a fourth-order equation for the layer variable. The main purpose is to analyze the well-posedness and asymptotic behavior of strong solutions. We first prove the local well-posedness through the higher order a prior estimates of the solution and Galerkin method. Then we establish the existence of global strong solution provided that the initial data is sufficiently small. Finally, we show the temporary decay estimates for the higher order derivatives of strong solution by using the negative Sobolev norm estimates.

上一条:数学学科Seminar第2206讲 三维外区域上的Navier-Stokes方程

下一条:数学学科Seminar第2204讲 奇异非局部偏微分方程的数值分析