数学系Seminar第2168讲 一维双曲守恒律的边界稳定性

创建时间:  2021/10/28  龚惠英   浏览次数:   返回

报告题目 (Title):Boundary stabilization of 1-D hyperbolic balance laws. (一维双曲守恒律的边界稳定性).

报告人 (Speaker):胡龙教授(山东大学)

报告时间 (Time):2021年10月29日(周五) 16:30-17:30

报告地点 (Place):线上腾讯会议

会议ID: 275824851 入会密码:211029

邀请人(Inviter):刘见礼

主办部门:理学院数学系

报告摘要:In this talk, we are concerned with the recent development of boundary stabilization of 1-D hyperbolic balance laws by using backstepping approach. We will show how to design boundary feedback controllers to rapidly stabilize several kinds of such coupled hyperbolic PDEs (linear or quasilinear, autonomous or non-autonomous, with local or nonlocal spatial terms...). In particular, the corresponding linear systems can be stabilized in uniformly optimal finite time.

上一条:今日化学系列报告第270讲 Nature, Property and Application: Methodology Matters

下一条:今日化学系列报告第269讲 原位TEM技术在传感机理研究中的进展


数学系Seminar第2168讲 一维双曲守恒律的边界稳定性

创建时间:  2021/10/28  龚惠英   浏览次数:   返回

报告题目 (Title):Boundary stabilization of 1-D hyperbolic balance laws. (一维双曲守恒律的边界稳定性).

报告人 (Speaker):胡龙教授(山东大学)

报告时间 (Time):2021年10月29日(周五) 16:30-17:30

报告地点 (Place):线上腾讯会议

会议ID: 275824851 入会密码:211029

邀请人(Inviter):刘见礼

主办部门:理学院数学系

报告摘要:In this talk, we are concerned with the recent development of boundary stabilization of 1-D hyperbolic balance laws by using backstepping approach. We will show how to design boundary feedback controllers to rapidly stabilize several kinds of such coupled hyperbolic PDEs (linear or quasilinear, autonomous or non-autonomous, with local or nonlocal spatial terms...). In particular, the corresponding linear systems can be stabilized in uniformly optimal finite time.

上一条:今日化学系列报告第270讲 Nature, Property and Application: Methodology Matters

下一条:今日化学系列报告第269讲 原位TEM技术在传感机理研究中的进展