数学系Seminar第2152期 表面相场模型的直接离散化方法

创建时间:  2021/10/09  龚惠英   浏览次数:   返回

报告主题:表面相场模型的直接离散化方法(Direct discretization method for phase field model on surfaces)

报 告 人:李义宝 教授(西安交通大学)

报告时间:2021年10月13日(周三) 19:00-22:00

参会方式:腾讯会议

会议ID:861 375 605

邀请人:潘晓敏

主办部门:理学院数学系

报告摘要:

In this talk, we will introduce simple and efficient direct discretization schemes for solving the phase field model on a fix and evolving surfaces. By using a conservation law and transport formulae, we derive the phase field model on evolving surfaces. An evolving surface is discretized using an unstructured triangular mesh. The discrete phase field model is defined on the surface mesh and its dual surface polygonal tessellation. The evolving triangular surfaces are then realized by moving the surface nodes according to a given velocity field. The proposed scheme is based on the Crank–Nicolson scheme and a linearly stabilized splitting scheme. The scheme is second order accurate, with respect to both space and time. Several numerical experiments are presented to demonstrate the performance and effectiveness of the proposed numerical scheme.

上一条:数学系Seminar第2153期 对于两相流系统中守恒型Allen-Cahn模型的一种快速有效的自适应窄区域方法

下一条:数学系Seminar第2151期 微分算子李代数的表示


数学系Seminar第2152期 表面相场模型的直接离散化方法

创建时间:  2021/10/09  龚惠英   浏览次数:   返回

报告主题:表面相场模型的直接离散化方法(Direct discretization method for phase field model on surfaces)

报 告 人:李义宝 教授(西安交通大学)

报告时间:2021年10月13日(周三) 19:00-22:00

参会方式:腾讯会议

会议ID:861 375 605

邀请人:潘晓敏

主办部门:理学院数学系

报告摘要:

In this talk, we will introduce simple and efficient direct discretization schemes for solving the phase field model on a fix and evolving surfaces. By using a conservation law and transport formulae, we derive the phase field model on evolving surfaces. An evolving surface is discretized using an unstructured triangular mesh. The discrete phase field model is defined on the surface mesh and its dual surface polygonal tessellation. The evolving triangular surfaces are then realized by moving the surface nodes according to a given velocity field. The proposed scheme is based on the Crank–Nicolson scheme and a linearly stabilized splitting scheme. The scheme is second order accurate, with respect to both space and time. Several numerical experiments are presented to demonstrate the performance and effectiveness of the proposed numerical scheme.

上一条:数学系Seminar第2153期 对于两相流系统中守恒型Allen-Cahn模型的一种快速有效的自适应窄区域方法

下一条:数学系Seminar第2151期 微分算子李代数的表示