数学系Seminar第2118期 环面上零散度向量场李代数的单模

创建时间:  2021/06/11  龚惠英   浏览次数:   返回

报告主题:环面上零散度向量场李代数的单模(Simple modules over the Lie algebras of divergence zero vector fields on a torus)

报 告 人:姚裕丰 教授 (上海海事大学)

报告时间:2021年6月11日(周五) 15:00

报告地点:校本部E512

邀 请 人:孙建才

主办部门:理学院数学系

报告摘要:Let $n\geq 2$ be an integer, $\mathcal{K}_n$ the Weyl algebra over the Laurent polynomial algebra $A_n=\mathbb{C} [x_1^{\pm 1}, x_2^{\pm 1}, ..., x_n^{\pm 1}]$, and $\mathbb{S}_n$ the Lie algebra of divergence zero vector fields on an $n$-dimensional torus. For any $\mathfrak{sl}_n$-module $V$ and any module $P$ over $\mathcal{K}_n$, we define an $\mathbb{S}_n$-module structure on the tensor product $P\otimes V$. In this talk, necessary and sufficient conditions for the $\mathbb{S}_n$-modules $P\otimes V$ to be simple are given, and an isomorphism criterion for nonminuscule $\mathbb{S}_n$-modules is provided. More precisely, all nonminuscule $\mathbb{S}_n$-modules are simple, and pairwise nonisomorphic. For minuscule $\mathbb{S}_n$-modules, minimal and maximal submodules are concretely constructed. This is a joint work with Brendan Frisk Dubsky, Xianqian Guo and Kaiming Zhao.

上一条:数学系Seminar第2119期 收敛分裂方法及其应用

下一条:数学系Seminar第2117期 有限张量范畴和有限维Hopf代数


数学系Seminar第2118期 环面上零散度向量场李代数的单模

创建时间:  2021/06/11  龚惠英   浏览次数:   返回

报告主题:环面上零散度向量场李代数的单模(Simple modules over the Lie algebras of divergence zero vector fields on a torus)

报 告 人:姚裕丰 教授 (上海海事大学)

报告时间:2021年6月11日(周五) 15:00

报告地点:校本部E512

邀 请 人:孙建才

主办部门:理学院数学系

报告摘要:Let $n\geq 2$ be an integer, $\mathcal{K}_n$ the Weyl algebra over the Laurent polynomial algebra $A_n=\mathbb{C} [x_1^{\pm 1}, x_2^{\pm 1}, ..., x_n^{\pm 1}]$, and $\mathbb{S}_n$ the Lie algebra of divergence zero vector fields on an $n$-dimensional torus. For any $\mathfrak{sl}_n$-module $V$ and any module $P$ over $\mathcal{K}_n$, we define an $\mathbb{S}_n$-module structure on the tensor product $P\otimes V$. In this talk, necessary and sufficient conditions for the $\mathbb{S}_n$-modules $P\otimes V$ to be simple are given, and an isomorphism criterion for nonminuscule $\mathbb{S}_n$-modules is provided. More precisely, all nonminuscule $\mathbb{S}_n$-modules are simple, and pairwise nonisomorphic. For minuscule $\mathbb{S}_n$-modules, minimal and maximal submodules are concretely constructed. This is a joint work with Brendan Frisk Dubsky, Xianqian Guo and Kaiming Zhao.

上一条:数学系Seminar第2119期 收敛分裂方法及其应用

下一条:数学系Seminar第2117期 有限张量范畴和有限维Hopf代数