数学系Seminar第2101期 对一些snarks的Berge-Fulkerson的猜想

创建时间:  2021/05/10  龚惠英   浏览次数:   返回

报告主题:对一些snarks的Berge-Fulkerson的猜想(The Berge-Fulkerson conjecture for some snarks )

报 告 人:郝荣霞 教授(北京交通大学)

报告时间:2021年5月13日(周四) 16:30

参会方式:腾讯会议

会议ID:926 390 254

邀请人:康丽英

主办部门:理学院数学系

报告摘要:It is conjectured by Berge and Fulkerson that every bridgeless cubic graph has six perfect matchings such that each edge is contained in exactly two of them. The Berge-Fulkerson Conjecture holds for 3-edge-colorable cubic graphs. A cubic graph is a snark if it is bridgeless and not 3-edge-colorable. In this talk, the Berge-Fulkerson conjecture is verified for some permutation graphs and an infinite family of cyclically 6-edge-connected snarks.

上一条:数学系Seminar第2102期 预定高斯曲率的凸超曲面

下一条:数学系Seminar第2100期 允许在非交换的阿贝尔简单群可传递的对称图


数学系Seminar第2101期 对一些snarks的Berge-Fulkerson的猜想

创建时间:  2021/05/10  龚惠英   浏览次数:   返回

报告主题:对一些snarks的Berge-Fulkerson的猜想(The Berge-Fulkerson conjecture for some snarks )

报 告 人:郝荣霞 教授(北京交通大学)

报告时间:2021年5月13日(周四) 16:30

参会方式:腾讯会议

会议ID:926 390 254

邀请人:康丽英

主办部门:理学院数学系

报告摘要:It is conjectured by Berge and Fulkerson that every bridgeless cubic graph has six perfect matchings such that each edge is contained in exactly two of them. The Berge-Fulkerson Conjecture holds for 3-edge-colorable cubic graphs. A cubic graph is a snark if it is bridgeless and not 3-edge-colorable. In this talk, the Berge-Fulkerson conjecture is verified for some permutation graphs and an infinite family of cyclically 6-edge-connected snarks.

上一条:数学系Seminar第2102期 预定高斯曲率的凸超曲面

下一条:数学系Seminar第2100期 允许在非交换的阿贝尔简单群可传递的对称图