数学系Seminar第2090期 蒙特卡洛树搜索方法在稀疏矩阵重排序问题的应用

创建时间:  2021/04/15  龚惠英   浏览次数:   返回

报告主题:蒙特卡洛树搜索方法在稀疏矩阵重排序问题的应用(An Efficient Single-player Monte Carlo Tree Search Method Based on Deep Learning and Element Importance for Sparse Matrix Reordering Problems)

报告人:戴彧虹 研究员 (中科院数学与系统科学研究院)

报告时间:2021年4月16日(周五) 19:30-21:30

报告地点:F309

邀请人:白延琴

主办部门:理学院数学系

报告摘要:The sparse matrix reordering problems is often used to produce the fewest new nonzero elements (called fill-ins) as possible as it can save computational cost and storage before applying direct methods to solve the large scale linear system. The sparse matrix reordering problems is NP-complete, so heuristic algorithms are usually used. This talk treats the sparse matrix reordering problems as a single-player game problem. Based on Deep Learning and element importance, an efficient single –player Monte Carlo tree search method is proposed to solve the sparse matrix reordering Problems.

上一条:物理学科Seminar第542讲 当人工智能遇到宇宙学

下一条:物理学科Seminar第541讲 玻色星稳态解的数值研究历史及其发展


数学系Seminar第2090期 蒙特卡洛树搜索方法在稀疏矩阵重排序问题的应用

创建时间:  2021/04/15  龚惠英   浏览次数:   返回

报告主题:蒙特卡洛树搜索方法在稀疏矩阵重排序问题的应用(An Efficient Single-player Monte Carlo Tree Search Method Based on Deep Learning and Element Importance for Sparse Matrix Reordering Problems)

报告人:戴彧虹 研究员 (中科院数学与系统科学研究院)

报告时间:2021年4月16日(周五) 19:30-21:30

报告地点:F309

邀请人:白延琴

主办部门:理学院数学系

报告摘要:The sparse matrix reordering problems is often used to produce the fewest new nonzero elements (called fill-ins) as possible as it can save computational cost and storage before applying direct methods to solve the large scale linear system. The sparse matrix reordering problems is NP-complete, so heuristic algorithms are usually used. This talk treats the sparse matrix reordering problems as a single-player game problem. Based on Deep Learning and element importance, an efficient single –player Monte Carlo tree search method is proposed to solve the sparse matrix reordering Problems.

上一条:物理学科Seminar第542讲 当人工智能遇到宇宙学

下一条:物理学科Seminar第541讲 玻色星稳态解的数值研究历史及其发展