数学系Seminar第2083期 Long-time asymptotically via the Deift-Zhou nonlinear steepest descent

创建时间:  2021/03/24  龚惠英   浏览次数:   返回

报告主题:Long-time asymptotically via the Deift-Zhou nonlinear steepest descent

报告人:马文秀 教授(南佛罗里达大学)

报告时间:2021年3月24日(周三)20:45

报告形式:腾讯会议

https://meeting.tencent.com/s/9yeuJ9GVnwuB

会议ID:359 257 353

会议密码:1234

邀请人:夏铁成

主办部门:理学院数学系

报告摘要: We will talk about long-time asymptotics for nonlinear PDEs integrable by the inverse scattering transform. The starting point is to build a class of oscillatory Riemann-Hilbert problems from Lax pairs. Long-time asympotics for integrable equations will be achieved through deforming the associated Riemann-Hilbert problems via the Deift-Zhou nonlinear steepest descent method. Applications will be discussed for vector integrable equations, including the vector nonlinear Schrodinger equations and the vector modified Korteweg-de Vries equations.


欢迎教师、学生参加!

上一条:物理学科Seminar第538讲 非对称性生长与纳米拓扑结构

下一条:数学系Seminar第2082期 On the long-wave approximation for the Euler-Poisson system


数学系Seminar第2083期 Long-time asymptotically via the Deift-Zhou nonlinear steepest descent

创建时间:  2021/03/24  龚惠英   浏览次数:   返回

报告主题:Long-time asymptotically via the Deift-Zhou nonlinear steepest descent

报告人:马文秀 教授(南佛罗里达大学)

报告时间:2021年3月24日(周三)20:45

报告形式:腾讯会议

https://meeting.tencent.com/s/9yeuJ9GVnwuB

会议ID:359 257 353

会议密码:1234

邀请人:夏铁成

主办部门:理学院数学系

报告摘要: We will talk about long-time asymptotics for nonlinear PDEs integrable by the inverse scattering transform. The starting point is to build a class of oscillatory Riemann-Hilbert problems from Lax pairs. Long-time asympotics for integrable equations will be achieved through deforming the associated Riemann-Hilbert problems via the Deift-Zhou nonlinear steepest descent method. Applications will be discussed for vector integrable equations, including the vector nonlinear Schrodinger equations and the vector modified Korteweg-de Vries equations.


欢迎教师、学生参加!

上一条:物理学科Seminar第538讲 非对称性生长与纳米拓扑结构

下一条:数学系Seminar第2082期 On the long-wave approximation for the Euler-Poisson system