数学系Seminar第1928期 耦合抛物系统的全局适定性

创建时间:  2019/10/10  龚惠英   浏览次数:   返回

报告主题:耦合抛物系统的全局适定性
报告人: 徐润章教授 ( 哈尔滨工程大学)
报告时间:2019年10月30日(周三)15:00
报告地点: 校本部G507
邀请人:李常品 教授
主办部门:理学院数学系
报告摘要:
The initial boundary value problem of a class of reaction-diffusion systems (coupled parabolic systems) with nonlinear coupled source terms is considered in order to classify the initial data for the global existence, finite time blowup and longtime decay of the solution. The whole study is conducted by considering three cases according to initial energy: low initial energy case, critical initial energy case and high initial energy case. For the low initial energy case and critical initial energy case the sufficient initial conditions of global existence, long time decay and finite time blowup are given to show a sharp-like condition. And for the high initial energy case the possibility of both global existence and finite time blowup is proved first, and then some sufficient initial conditions of finite time blowup and global existence are obtained respectively.

欢迎教师、学生参加!

 

上一条:数学系Seminar第1927期 非线性发展方程的并行数值方法

下一条:数学系Seminar第1929期 The dual Minkowski problem


数学系Seminar第1928期 耦合抛物系统的全局适定性

创建时间:  2019/10/10  龚惠英   浏览次数:   返回

报告主题:耦合抛物系统的全局适定性
报告人: 徐润章教授 ( 哈尔滨工程大学)
报告时间:2019年10月30日(周三)15:00
报告地点: 校本部G507
邀请人:李常品 教授
主办部门:理学院数学系
报告摘要:
The initial boundary value problem of a class of reaction-diffusion systems (coupled parabolic systems) with nonlinear coupled source terms is considered in order to classify the initial data for the global existence, finite time blowup and longtime decay of the solution. The whole study is conducted by considering three cases according to initial energy: low initial energy case, critical initial energy case and high initial energy case. For the low initial energy case and critical initial energy case the sufficient initial conditions of global existence, long time decay and finite time blowup are given to show a sharp-like condition. And for the high initial energy case the possibility of both global existence and finite time blowup is proved first, and then some sufficient initial conditions of finite time blowup and global existence are obtained respectively.

欢迎教师、学生参加!

 

上一条:数学系Seminar第1927期 非线性发展方程的并行数值方法

下一条:数学系Seminar第1929期 The dual Minkowski problem