数学系Seminar第1860期 Banded M-splitting Iteration Methods for Spatial Fractional Diffusion Equations

创建时间:  2019/06/03  龚惠英   浏览次数:   返回

报告主题:Banded M-splitting Iteration Methods for Spatial Fractional Diffusion Equations
报告人:白中治   研究员 (中国科学院数学与系统科学研究院)
报告时间:2019年6月12日(周三)14:30
报告地点:校本部G507
邀请人:张建军
主办部门:理学院数学系
报告摘要:For solving time-dependent one-dimensional spatial-fractional diffusion equations of variable coefficients, we establish a banded M-splitting iteration method applicable to compute approximate solutions for the corresponding discrete linear systems resulting from certain finite difference schemes at every temporal level, and demonstrate its asymptotic convergence without imposing any extra condition. Also, we provide a multistep variant for the banded M-splitting iteration method, and prove that the computed solutions of the discrete linear systems by employing this iteration method converge to the exact solutions of the spatial fractional diffusion equations. Numerical experiments show the accuracy and efficiency of the multistep banded M-splitting iteration method.

 


欢迎教师、学生参加!

 

上一条:物理学科Seminar第475讲 全息纠缠熵的比特流描述及其可能应用

下一条:数学系Seminar第1861期 Preconditioned Iteration Method for Stokes Control Problems


数学系Seminar第1860期 Banded M-splitting Iteration Methods for Spatial Fractional Diffusion Equations

创建时间:  2019/06/03  龚惠英   浏览次数:   返回

报告主题:Banded M-splitting Iteration Methods for Spatial Fractional Diffusion Equations
报告人:白中治   研究员 (中国科学院数学与系统科学研究院)
报告时间:2019年6月12日(周三)14:30
报告地点:校本部G507
邀请人:张建军
主办部门:理学院数学系
报告摘要:For solving time-dependent one-dimensional spatial-fractional diffusion equations of variable coefficients, we establish a banded M-splitting iteration method applicable to compute approximate solutions for the corresponding discrete linear systems resulting from certain finite difference schemes at every temporal level, and demonstrate its asymptotic convergence without imposing any extra condition. Also, we provide a multistep variant for the banded M-splitting iteration method, and prove that the computed solutions of the discrete linear systems by employing this iteration method converge to the exact solutions of the spatial fractional diffusion equations. Numerical experiments show the accuracy and efficiency of the multistep banded M-splitting iteration method.

 


欢迎教师、学生参加!

 

上一条:物理学科Seminar第475讲 全息纠缠熵的比特流描述及其可能应用

下一条:数学系Seminar第1861期 Preconditioned Iteration Method for Stokes Control Problems