数学系Seminar第1286期 Hausdorff operators on H^1 spaces

创建时间:  2016/05/10  龚惠英   浏览次数:   返回

报告主题:Hausdorff operators on H^1 spaces
报告人:  Dashan Fan 教授(University of Wisconsin-Milwaukee,USA)
报告时间:2016年5月17日(周二)15:00
报告地点:校本部G507
邀请人:赵发友
主办部门:理学院数学系
报告摘要:It is known that the Hausdorff operator H_{Φ} is either bounded on the Lebesgue space L¹(??) or bounded on the Hardy space H¹(??) if and only if Φ is a Lebesgue integrable function, provided Φ≥0. This raises an interesting question: Whether the condition Φ≥0 can be removed? When n=1 we establish a sufficient condition for the H¹(?) boundedness of H_{Φ} and this result gives a negative answer to the above question. The problem remains open for the case n≥2.

欢迎教师、学生参加 !

上一条:数学系Seminar第1284期 单相和双相障碍的脑磁共振影像差异标志

下一条:数学系Seminar第1287期 线性群的轨道长和abelian商


数学系Seminar第1286期 Hausdorff operators on H^1 spaces

创建时间:  2016/05/10  龚惠英   浏览次数:   返回

报告主题:Hausdorff operators on H^1 spaces
报告人:  Dashan Fan 教授(University of Wisconsin-Milwaukee,USA)
报告时间:2016年5月17日(周二)15:00
报告地点:校本部G507
邀请人:赵发友
主办部门:理学院数学系
报告摘要:It is known that the Hausdorff operator H_{Φ} is either bounded on the Lebesgue space L¹(??) or bounded on the Hardy space H¹(??) if and only if Φ is a Lebesgue integrable function, provided Φ≥0. This raises an interesting question: Whether the condition Φ≥0 can be removed? When n=1 we establish a sufficient condition for the H¹(?) boundedness of H_{Φ} and this result gives a negative answer to the above question. The problem remains open for the case n≥2.

欢迎教师、学生参加 !

上一条:数学系Seminar第1284期 单相和双相障碍的脑磁共振影像差异标志

下一条:数学系Seminar第1287期 线性群的轨道长和abelian商