数学学科Seminar第2989讲 Robin边界控制下Boussinesq方程的分析

创建时间:  2025/12/10  邵奋芬   浏览次数:   返回

报告题目 (title):Analysis of Robin-boundary control for the Boussinesq equations

(Robin边界控制下Boussinesq方程的分析)

报告人 (Speaker):龚伟 教授(中科院)

报告时间 (Time):2025年12月16日(周二)10:00

报告地点 (Place):#腾讯会议:216-802-379

邀请人(Inviter):李新祥

主办部门:理学院数学系

报告摘要:In this talk, we study an optimal boundary control problem for the Boussinesq equations, which couple the time-dependent Navier-Stokes system with a heat equation, where the control enters through a Robin boundary condition on temperature. We begin by establishing the well-posedness of the optimization problem via a variational framework. We then derive both first- and second-order optimality conditions, including explicit characterizations of the adjoint state and the optimal control. Next, we perform a detailed numerical analysis of a fully discrete scheme: using finite elements in space and a semi-implicit scheme in time, combined with variational discretization for the control. We present rigorous a priori error estimates for the state, adjoint state, and control variables. Numerical experiments are provided to validate our theoretical results.

上一条:数学学科Seminar第2990讲 分次Nakajima张量簇

下一条:数学学科Seminar第2988讲 Novikov代数和转置Poisson代数


数学学科Seminar第2989讲 Robin边界控制下Boussinesq方程的分析

创建时间:  2025/12/10  邵奋芬   浏览次数:   返回

报告题目 (title):Analysis of Robin-boundary control for the Boussinesq equations

(Robin边界控制下Boussinesq方程的分析)

报告人 (Speaker):龚伟 教授(中科院)

报告时间 (Time):2025年12月16日(周二)10:00

报告地点 (Place):#腾讯会议:216-802-379

邀请人(Inviter):李新祥

主办部门:理学院数学系

报告摘要:In this talk, we study an optimal boundary control problem for the Boussinesq equations, which couple the time-dependent Navier-Stokes system with a heat equation, where the control enters through a Robin boundary condition on temperature. We begin by establishing the well-posedness of the optimization problem via a variational framework. We then derive both first- and second-order optimality conditions, including explicit characterizations of the adjoint state and the optimal control. Next, we perform a detailed numerical analysis of a fully discrete scheme: using finite elements in space and a semi-implicit scheme in time, combined with variational discretization for the control. We present rigorous a priori error estimates for the state, adjoint state, and control variables. Numerical experiments are provided to validate our theoretical results.

上一条:数学学科Seminar第2990讲 分次Nakajima张量簇

下一条:数学学科Seminar第2988讲 Novikov代数和转置Poisson代数