数学学科Seminar第2970讲 二阶椭圆算子的主特征值

创建时间:  2025/11/25  邵奋芬   浏览次数:   返回

报告题目 (Title):On principal eigenvalues for second order elliptic operators

(二阶椭圆算子的主特征值)

报告人 (Speaker):楼元 教授(上海交通大学)

报告时间 (Time):2025年11月28日(周五)15:00

报告地点 (Place):校本部GJ303

邀请人(Inviter):盛万成

主办部门:理学院数学系

报告摘要:The study on the qualitative properties of principal eigenvalues for second order elliptic operators has a long history. In recent years there are growing interest in investigating the asymptotic behaviors of principal eigenvalues with small diffusion or large drift rates,in order to determine some global information of principal eigenvalues with respect to diffusion and drift rates. In this talk we will give some review of the history and discuss some recent works along this line. This talk is mainly based on joint works with Shuang Liu (Beijing Institute of Technology) and Maolin Zhou (Nankai University).

上一条:量子科技研究院seminar第82讲暨物理学科Seminar第779讲 Kagome超导体中的非常规电子不稳定性

下一条:物理学科Seminar第778讲 Holographic description of Strongly coupled Matter and Neutron Star applications


数学学科Seminar第2970讲 二阶椭圆算子的主特征值

创建时间:  2025/11/25  邵奋芬   浏览次数:   返回

报告题目 (Title):On principal eigenvalues for second order elliptic operators

(二阶椭圆算子的主特征值)

报告人 (Speaker):楼元 教授(上海交通大学)

报告时间 (Time):2025年11月28日(周五)15:00

报告地点 (Place):校本部GJ303

邀请人(Inviter):盛万成

主办部门:理学院数学系

报告摘要:The study on the qualitative properties of principal eigenvalues for second order elliptic operators has a long history. In recent years there are growing interest in investigating the asymptotic behaviors of principal eigenvalues with small diffusion or large drift rates,in order to determine some global information of principal eigenvalues with respect to diffusion and drift rates. In this talk we will give some review of the history and discuss some recent works along this line. This talk is mainly based on joint works with Shuang Liu (Beijing Institute of Technology) and Maolin Zhou (Nankai University).

上一条:量子科技研究院seminar第82讲暨物理学科Seminar第779讲 Kagome超导体中的非常规电子不稳定性

下一条:物理学科Seminar第778讲 Holographic description of Strongly coupled Matter and Neutron Star applications