报告题目 (Title):A Pólya–Szegő-type inequality for convex functions
(凸函数的 Pólya–Szegő-type不等式)
报告人 (Speaker):Fabian mussnig(萨尔茨堡大学)
报告时间 (Time):2025年11月21日(周五) 9:00-9:45
报告地点 (Place):上海大学宝山校区FJ404
邀请人(Inviter):席东盟、李晋、吴加勇
主办部门:理学院数学系
报告摘要:The classical Pólya–Szegő inequality can be seen as a far-reaching functional analog of the Euclidean isoperimetric inequality. Several generalizations are known, among which we want to highlight a version initially discovered by Klimov that considers simultaneous symmetrization of both the Sobolev function and the Young function.
We present a new Pólya–Szegő-type inequality for convex functions which coincides with Klimov's in special cases. Our approach builds upon a previous strategy of Klartag and connects mixed volumes of higher-dimensional convex bodies with mixed Monge–Ampère measures of convex functions.