报告题目 (Title):Convergence rate of Smoothed empirical Wasserstein distance
(平滑经验Wasserstein距离的收敛速度)
报告人 (Speaker):黎怀谦 教授(天津大学)
报告时间 (Time):2025年11月14日(周五)16:00-19:00
报告地点 (Place): 腾讯会议:880-966-912
邀请人(Inviter):阳芬芬
主办部门:理学院数学系
报告摘要:This work provides upper bounds for the expected Gaussian-smoothed image -Wasserstein distance. We analyze the convergence rate of the empirical measure image , constructed from image samples, towards the true probability measure image on image . The bounds hold universally for any image —encompassing the total variation distance when image —under mild moment assumptions on image . Furthermore, we extend our analysis beyond the independent and identically distributed case, deriving convergence results for dependent data generated by image -mixing sequences and Markov chains.