数学学科Seminar第2952讲 三维不规则外域奇扰动对流扩散反应问题的高效谱法

创建时间:  2025/11/12  邵奋芬   浏览次数:   返回

报告题目 (Title):An Efficient Spectral Method for Singularly Perturbed Convection-Diffusion-Reaction Problems in Three-Dimensional Irregular Exterior Domains(三维不规则外域奇扰动对流扩散反应问题的高效谱法)

报告人 (Speaker):王中庆 教授(上海理工大学)

报告时间 (Time):2025年11月13日(周四)9:00 

报告地点 (Place):腾讯会议 938-559-552

邀请人(Inviter):朱佩成

主办部门:理学院数学系

报告摘要:

This paper presents an efficient Fourier - Legendre - Jacobi rational spectral method , based on mapping techniques , for solving singularly perturbed convection - diffusion - reaction problems in a three - dimensional exterior domain with a complex obstacle . The solutions exhibit bound - ary or interior layer behavior as e →0. The method begins by applying a spherical coordinate transformation to map the exterior domain of the complex obstacle onto the exterior of a unit sphere , while simultaneously transforming the convection - diffusion - reaction equation . The transformed equation is then formulated in its weak form , and a Fourier - Legendre - Jacobi rational spectral scheme is introduced . The paper provides a detailed description of the numerical implementation and analyzes the convergence of the solution in the H - norm . Numerical results demonstrate that the proposed method achieves high - order accuracy .

上一条:数学学科Seminar第2953讲 模型和数据驱动的完全离散连续数据同化算法:误差估计和参数恢复

下一条:数学学科Seminar第2949讲 空间分数阶偏微分方程:波、图像与数值计算


数学学科Seminar第2952讲 三维不规则外域奇扰动对流扩散反应问题的高效谱法

创建时间:  2025/11/12  邵奋芬   浏览次数:   返回

报告题目 (Title):An Efficient Spectral Method for Singularly Perturbed Convection-Diffusion-Reaction Problems in Three-Dimensional Irregular Exterior Domains(三维不规则外域奇扰动对流扩散反应问题的高效谱法)

报告人 (Speaker):王中庆 教授(上海理工大学)

报告时间 (Time):2025年11月13日(周四)9:00 

报告地点 (Place):腾讯会议 938-559-552

邀请人(Inviter):朱佩成

主办部门:理学院数学系

报告摘要:

This paper presents an efficient Fourier - Legendre - Jacobi rational spectral method , based on mapping techniques , for solving singularly perturbed convection - diffusion - reaction problems in a three - dimensional exterior domain with a complex obstacle . The solutions exhibit bound - ary or interior layer behavior as e →0. The method begins by applying a spherical coordinate transformation to map the exterior domain of the complex obstacle onto the exterior of a unit sphere , while simultaneously transforming the convection - diffusion - reaction equation . The transformed equation is then formulated in its weak form , and a Fourier - Legendre - Jacobi rational spectral scheme is introduced . The paper provides a detailed description of the numerical implementation and analyzes the convergence of the solution in the H - norm . Numerical results demonstrate that the proposed method achieves high - order accuracy .

上一条:数学学科Seminar第2953讲 模型和数据驱动的完全离散连续数据同化算法:误差估计和参数恢复

下一条:数学学科Seminar第2949讲 空间分数阶偏微分方程:波、图像与数值计算