数学学科Seminar第2945讲 图的最小秩

创建时间:  2025/11/07  邵奋芬   浏览次数:   返回

报告题目 (Title):Minimum ranks of graphs (图的最小秩)

报告人 (Speaker):Li Zhongshan 教授(佐治亚州立大学)

报告时间 (Time):2025年11月12日(周三)11:00

报告地点 (Place):腾讯会议:577-109-892

邀请人(Inviter):谭福平

主办部门:理学院数学系

报告摘要(Abstract):Let $G$ be a graph of order $n$ with vertex set $V= \{ 1, 2, \dots, n\}$ and edge set $E$. The set of all real symmetric matrices associated with $G$ (with unrestricted diagonal entries), denoted ${\cal S}(G),$ is defined by $$ {\cal S}(G) =\{ A=[a_{ij}]\in \mathbb R^{n\times n} \mid a_{ii} \text{ is arbitrary }, a_{ij} \neq 0 \text{ iff } \{ i,j\} \in E \} .$$ The minimum rank of $G$, denoted mr$(G)$, is given by $$\mbox{mr}(G) = \min \{ \text{rank}(A) \mid A\in {\cal S}(G)\} .$$ Let $G^c$ denote the complement of $G$. The graph complement conjecture asserts that $$ \text{mr}(G) +\text{mr}(G^c) \le n+2. $$ We survey some results on the minimum ranks of graphs and present a latest result on the graph complement conjecture.

上一条:数学学科Seminar——核心数学研究所——几何与分析综合报告第111讲 关于高阶仿射等周不等式与等容量不等式

下一条:数学学科Seminar第2944讲 关于流形横向相交相似性的最新进展


数学学科Seminar第2945讲 图的最小秩

创建时间:  2025/11/07  邵奋芬   浏览次数:   返回

报告题目 (Title):Minimum ranks of graphs (图的最小秩)

报告人 (Speaker):Li Zhongshan 教授(佐治亚州立大学)

报告时间 (Time):2025年11月12日(周三)11:00

报告地点 (Place):腾讯会议:577-109-892

邀请人(Inviter):谭福平

主办部门:理学院数学系

报告摘要(Abstract):Let $G$ be a graph of order $n$ with vertex set $V= \{ 1, 2, \dots, n\}$ and edge set $E$. The set of all real symmetric matrices associated with $G$ (with unrestricted diagonal entries), denoted ${\cal S}(G),$ is defined by $$ {\cal S}(G) =\{ A=[a_{ij}]\in \mathbb R^{n\times n} \mid a_{ii} \text{ is arbitrary }, a_{ij} \neq 0 \text{ iff } \{ i,j\} \in E \} .$$ The minimum rank of $G$, denoted mr$(G)$, is given by $$\mbox{mr}(G) = \min \{ \text{rank}(A) \mid A\in {\cal S}(G)\} .$$ Let $G^c$ denote the complement of $G$. The graph complement conjecture asserts that $$ \text{mr}(G) +\text{mr}(G^c) \le n+2. $$ We survey some results on the minimum ranks of graphs and present a latest result on the graph complement conjecture.

上一条:数学学科Seminar——核心数学研究所——几何与分析综合报告第111讲 关于高阶仿射等周不等式与等容量不等式

下一条:数学学科Seminar第2944讲 关于流形横向相交相似性的最新进展