数学学科Seminar第2915讲 特征2域上的左对称超代数与李超代数的拉格朗日扩张

创建时间:  2025/10/20  邵奋芬   浏览次数:   返回

报告题目 (Title):Left-symmetric superalgebras and Lagrangian extensions of Lie superalgebras in characteristic 2

(特征2域上的左对称超代数与李超代数的拉格朗日扩张)

报告人 (Speaker):Sofiane Bouarroudj(纽约大学阿布扎比分校)

报告时间 (Time):2025年10月22日 (周三) 15:30-16:30

报告地点 (Place):校本部GJ303

邀请人(Inviter):张红莲教授

主办部门:理学院数学系

报告摘要:

The purpose of this talk is twofold. First, we introduce the notions of left-symmetric and left alternative structures on superspaces in characteristic 2. We describe their main properties and classify them in dimension 2.

Secondly, we present a method of Lagrangian extension of Lie superalgebras in characteristic 2 with a flat torsion-free connection. We show that any strongly polarized quasi-Frobenius Lie superalgebra can be obtained as a Lagrangian extension. Further, we demonstrate that Lagrangian extensions are classified by a certain cohomology space that we introduce. To illustrate our constructions, all Lagrangian extensions in dimension 4 have been described. This is a joint work with S. Benayadi and Q. Ehret.

上一条:数学学科Seminar第2916讲 Gelfand-Tsetlin 理论

下一条:数学学科Seminar第2914讲 构造具有好的相关度的二元序列


数学学科Seminar第2915讲 特征2域上的左对称超代数与李超代数的拉格朗日扩张

创建时间:  2025/10/20  邵奋芬   浏览次数:   返回

报告题目 (Title):Left-symmetric superalgebras and Lagrangian extensions of Lie superalgebras in characteristic 2

(特征2域上的左对称超代数与李超代数的拉格朗日扩张)

报告人 (Speaker):Sofiane Bouarroudj(纽约大学阿布扎比分校)

报告时间 (Time):2025年10月22日 (周三) 15:30-16:30

报告地点 (Place):校本部GJ303

邀请人(Inviter):张红莲教授

主办部门:理学院数学系

报告摘要:

The purpose of this talk is twofold. First, we introduce the notions of left-symmetric and left alternative structures on superspaces in characteristic 2. We describe their main properties and classify them in dimension 2.

Secondly, we present a method of Lagrangian extension of Lie superalgebras in characteristic 2 with a flat torsion-free connection. We show that any strongly polarized quasi-Frobenius Lie superalgebra can be obtained as a Lagrangian extension. Further, we demonstrate that Lagrangian extensions are classified by a certain cohomology space that we introduce. To illustrate our constructions, all Lagrangian extensions in dimension 4 have been described. This is a joint work with S. Benayadi and Q. Ehret.

上一条:数学学科Seminar第2916讲 Gelfand-Tsetlin 理论

下一条:数学学科Seminar第2914讲 构造具有好的相关度的二元序列