数学学科Seminar第2901讲 高波数Helmholtz方程的两级混合Schwarz方法

创建时间:  2025/09/18  邵奋芬   浏览次数:   返回

报告题目:高波数Helmholtz方程的两级混合Schwarz方法(Two-level hybrid Schwarz methods for Helmholtz equation with high wavenumber)

报告人 (Speaker):卢培培 副教授(苏州大学)

报告时间 (Time):2025年9月26日(周五) 14:00

报告地点 (Place):校本部GJ303

邀请人(Inviter):刘东杰

主办部门:理学院数学系

报告摘要: In this talk, we discuss and analyze two-level hybrid Schwarz preconditioners for solving the Helmholtz equation with high wave number in two and three dimensions. Both preconditioners are defined over a set of overlapping subdomains, with each preconditioner formed by a global coarse solver and one local solver on each subdomain. The global coarse solver is based on the localized orthogonal decomposition (LOD) technique, which was proposed originally for the discretization schemes for elliptic multiscale problems with heterogeneous and highly oscillating coefficients and Helmholtz problems with high wave number to eliminate the pollution effect. The local subproblems are Helmholtz problems in subdomains with homogeneous boundary conditions (the first preconditioner) or impedance boundary conditions (the second preconditioner). Both preconditioners are shown to be optimal under some reasonable conditions, that is, a uniform upper bound of the preconditioned operator norm and a uniform lower bound of the field of values are established in terms of all the key parameters, such as the fine mesh size, the coarse mesh size, the subdomain size and the wave numbers. It is the first time to show that the LOD solver can be a very effective coarse solver when it is used appropriately in the Schwarz method with multiple overlapping subdomains. Numerical experiments are presented to confirm the optimality and efficiency of the two proposed preconditioner

上一条:数学学科Seminar第2902讲 非线性模型降阶及其应用

下一条:数学学科Seminar第2900讲 Leavitt路代数的简介


数学学科Seminar第2901讲 高波数Helmholtz方程的两级混合Schwarz方法

创建时间:  2025/09/18  邵奋芬   浏览次数:   返回

报告题目:高波数Helmholtz方程的两级混合Schwarz方法(Two-level hybrid Schwarz methods for Helmholtz equation with high wavenumber)

报告人 (Speaker):卢培培 副教授(苏州大学)

报告时间 (Time):2025年9月26日(周五) 14:00

报告地点 (Place):校本部GJ303

邀请人(Inviter):刘东杰

主办部门:理学院数学系

报告摘要: In this talk, we discuss and analyze two-level hybrid Schwarz preconditioners for solving the Helmholtz equation with high wave number in two and three dimensions. Both preconditioners are defined over a set of overlapping subdomains, with each preconditioner formed by a global coarse solver and one local solver on each subdomain. The global coarse solver is based on the localized orthogonal decomposition (LOD) technique, which was proposed originally for the discretization schemes for elliptic multiscale problems with heterogeneous and highly oscillating coefficients and Helmholtz problems with high wave number to eliminate the pollution effect. The local subproblems are Helmholtz problems in subdomains with homogeneous boundary conditions (the first preconditioner) or impedance boundary conditions (the second preconditioner). Both preconditioners are shown to be optimal under some reasonable conditions, that is, a uniform upper bound of the preconditioned operator norm and a uniform lower bound of the field of values are established in terms of all the key parameters, such as the fine mesh size, the coarse mesh size, the subdomain size and the wave numbers. It is the first time to show that the LOD solver can be a very effective coarse solver when it is used appropriately in the Schwarz method with multiple overlapping subdomains. Numerical experiments are presented to confirm the optimality and efficiency of the two proposed preconditioner

上一条:数学学科Seminar第2902讲 非线性模型降阶及其应用

下一条:数学学科Seminar第2900讲 Leavitt路代数的简介