数学学科Seminar第2882讲 Braid群源于量子对称对在泊松齐次空间的作用

创建时间:  2025/06/23  邵奋芬   浏览次数:   返回

报告题目 (Title):Braid group actions on the Poisson homogeneous spaces arising from quantum symmetric pairs

(Braid群源于量子对称对在泊松齐次空间的作用)

报告人 (Speaker):张伟楠 博士(香港大学)

报告时间 (Time):2025年6月24日(周二)15:30

报告地点 (Place):校本部GJ303

邀请人(Inviter):黄红娣

主办部门:理学院数学系

报告摘要:The fundamental work of De Concini-Kac-Procesi shows that one can recover the dual Poisson Lie group G∗ by taking a suitable semi-classical limit on quantum groups. The quantum symmetric pairs are quantization of symmetric pairs,and they involve coideal subalgebras of quantum groups, called i-quantum groups.

Recently, Song obtained a class of (dual) Poisson homogeneous K⊥\G∗spaces by taking suitable semi-classical limits on i-quantum groups. In this talk, using the braid group actions on i-quantum groups, we will construct braid group actions and polynomial generators for the coordinate algebra O(K⊥\G∗). This is joint with Jinfeng Song (National University of Singapore).



上一条:量子科技研究院Seminar第66讲暨物理学科Seminar第745讲 基于超导电路的微波量子态调控和量子比特操控

下一条:数学学科Seminar第2881讲 带余项的若干Lp型Hardy不等式与Rellich不等式


数学学科Seminar第2882讲 Braid群源于量子对称对在泊松齐次空间的作用

创建时间:  2025/06/23  邵奋芬   浏览次数:   返回

报告题目 (Title):Braid group actions on the Poisson homogeneous spaces arising from quantum symmetric pairs

(Braid群源于量子对称对在泊松齐次空间的作用)

报告人 (Speaker):张伟楠 博士(香港大学)

报告时间 (Time):2025年6月24日(周二)15:30

报告地点 (Place):校本部GJ303

邀请人(Inviter):黄红娣

主办部门:理学院数学系

报告摘要:The fundamental work of De Concini-Kac-Procesi shows that one can recover the dual Poisson Lie group G∗ by taking a suitable semi-classical limit on quantum groups. The quantum symmetric pairs are quantization of symmetric pairs,and they involve coideal subalgebras of quantum groups, called i-quantum groups.

Recently, Song obtained a class of (dual) Poisson homogeneous K⊥\G∗spaces by taking suitable semi-classical limits on i-quantum groups. In this talk, using the braid group actions on i-quantum groups, we will construct braid group actions and polynomial generators for the coordinate algebra O(K⊥\G∗). This is joint with Jinfeng Song (National University of Singapore).



上一条:量子科技研究院Seminar第66讲暨物理学科Seminar第745讲 基于超导电路的微波量子态调控和量子比特操控

下一条:数学学科Seminar第2881讲 带余项的若干Lp型Hardy不等式与Rellich不等式