数学学科Seminar第2872讲 深度自适应采样及其在代理模型中的应用

创建时间:  2025/06/12  邵奋芬   浏览次数:   返回

报告题目 (Title):Deep Adaptive Sampling and its Application on Surrogates(深度自适应采样及其在代理模型中的应用)

报告人 (Speaker):翟佳羽 助理教授(上海科技大学)

报告时间 (Time):2025年6月13日(周五)11:00

报告地点 (Place):宝山校区GJ303

邀请人(Inviter):纪丽洁

主办部门:理学院数学系

摘要:We present two deep adaptive sampling methods and apply one to surrogate modeling of low-regularity parametric differential equations and illustrate that this mechanism is necessary for constructing surrogate models, to deal with the sampling problem in high dimensional parameter and physics spaces, with a relatively small sample size. Both the surrogate model and sampling model are approximated with deep neural networks. In particular, the sampling model is a normalizing flow, so that the sampling is immediate. We demonstrate the effectiveness of the proposed method with a series of numerical experiments.

上一条:数学学科Seminar第2873讲 品味立体几何之美--从正多面体到正多胞体

下一条:数学学科Seminar第2871讲 参数化流固耦合问题不确定性量化的降阶模型


数学学科Seminar第2872讲 深度自适应采样及其在代理模型中的应用

创建时间:  2025/06/12  邵奋芬   浏览次数:   返回

报告题目 (Title):Deep Adaptive Sampling and its Application on Surrogates(深度自适应采样及其在代理模型中的应用)

报告人 (Speaker):翟佳羽 助理教授(上海科技大学)

报告时间 (Time):2025年6月13日(周五)11:00

报告地点 (Place):宝山校区GJ303

邀请人(Inviter):纪丽洁

主办部门:理学院数学系

摘要:We present two deep adaptive sampling methods and apply one to surrogate modeling of low-regularity parametric differential equations and illustrate that this mechanism is necessary for constructing surrogate models, to deal with the sampling problem in high dimensional parameter and physics spaces, with a relatively small sample size. Both the surrogate model and sampling model are approximated with deep neural networks. In particular, the sampling model is a normalizing flow, so that the sampling is immediate. We demonstrate the effectiveness of the proposed method with a series of numerical experiments.

上一条:数学学科Seminar第2873讲 品味立体几何之美--从正多面体到正多胞体

下一条:数学学科Seminar第2871讲 参数化流固耦合问题不确定性量化的降阶模型