数学学科Seminar第2811讲 非线性反问题的一种正则化多层次方法

创建时间:  2025/03/10  邵奋芬   浏览次数: 111   返回

报告题目 (Title):A regularizing multilevel approach for nonlinear inverse problems(非线性反问题的一种正则化多层次方法)

报告人 (Speaker): 王薇 教授(嘉兴大学)

报告时间 (Time):2025年3月13日(周四) 19:00

报告地点 (Place):腾讯会议(516 391 552)

邀请人(Inviter):朱佩成 教授

主办部门:理学院数学系

报告摘要:In this talk, we propose a multilevel method for solving nonlinear ill-posed problems F(x) = y in Banach spaces. By minimizing the discretized version of the regularized functionals for different discretization levels, we define a sequence of regularized approximations to the exact solution, which is shown to be stable and globally convergent for arbitrary initial guesses. The penalty terms $\Theta$ in regularized functionals are allowed to be non-smooth to include $L^p-L^1$ or $L^p-$TV (total variation) cases, which are important in reconstructing special features of solutions such as sparsity and discontinuities. Two parameter identification examples are presented to validate the theoretical analysis and verify the method's effectiveness.

上一条:量子科技研究院Seminar第53讲暨物理学科Seminar第727讲 量子物质中的演生现象和展望

下一条:数学学科Seminar第2810讲 有理数可数性的构造证明


数学学科Seminar第2811讲 非线性反问题的一种正则化多层次方法

创建时间:  2025/03/10  邵奋芬   浏览次数: 111   返回

报告题目 (Title):A regularizing multilevel approach for nonlinear inverse problems(非线性反问题的一种正则化多层次方法)

报告人 (Speaker): 王薇 教授(嘉兴大学)

报告时间 (Time):2025年3月13日(周四) 19:00

报告地点 (Place):腾讯会议(516 391 552)

邀请人(Inviter):朱佩成 教授

主办部门:理学院数学系

报告摘要:In this talk, we propose a multilevel method for solving nonlinear ill-posed problems F(x) = y in Banach spaces. By minimizing the discretized version of the regularized functionals for different discretization levels, we define a sequence of regularized approximations to the exact solution, which is shown to be stable and globally convergent for arbitrary initial guesses. The penalty terms $\Theta$ in regularized functionals are allowed to be non-smooth to include $L^p-L^1$ or $L^p-$TV (total variation) cases, which are important in reconstructing special features of solutions such as sparsity and discontinuities. Two parameter identification examples are presented to validate the theoretical analysis and verify the method's effectiveness.

上一条:量子科技研究院Seminar第53讲暨物理学科Seminar第727讲 量子物质中的演生现象和展望

下一条:数学学科Seminar第2810讲 有理数可数性的构造证明