上海大学核心数学研究所——几何与分析综合报告第99讲 为什么有限 Blaschke 积主要考虑两个成分的黎曼曲面

创建时间:  2024/11/22  龚惠英   浏览次数:   返回

报告题目 (Title):Why finite Blaschke products prefer two-component Riemann surfaces(为什么有限 Blaschke 积主要考虑两个成分的黎曼曲面)

报告人 (Speaker):黄寒松 教授(华东理工大学)

报告时间 (Time):2024年11月22日(周五) 17:00

报告地点 (Place):校本部GJ303

邀请人(Inviter):席东盟、李晋、吴加勇

主办部门:理学院数学系

摘要:Cowen and Thomson's remarkable on analytic Toeplitz operators says that on the Bergman space over the unit disk, under some mild condition a bounded holomorphic function h on \mathbb{D}, can be written as a function of a finite Blaschke product $B$ such that the commutant of the Toeplitz operator defined by $h$ equals that of the Toeplitz operator defined by B; that is, {M_h}'={M_B}'. In particular, this holds if h lies in Hol(\overline{\mathbb{D}}).

From a geometric approach, we discuss properties concerning irreducibility for the classes of multiplication operators of finite Blaschke product, and also give nontrivial applications to the Dirichlet space.

上一条:量子科技研究院Seminar第35讲暨物理学科Seminar第705讲 量子多体问题

下一条:数学学科Seminar第2778讲 利用深度神经网络设计高维闭环最优控制


上海大学核心数学研究所——几何与分析综合报告第99讲 为什么有限 Blaschke 积主要考虑两个成分的黎曼曲面

创建时间:  2024/11/22  龚惠英   浏览次数:   返回

报告题目 (Title):Why finite Blaschke products prefer two-component Riemann surfaces(为什么有限 Blaschke 积主要考虑两个成分的黎曼曲面)

报告人 (Speaker):黄寒松 教授(华东理工大学)

报告时间 (Time):2024年11月22日(周五) 17:00

报告地点 (Place):校本部GJ303

邀请人(Inviter):席东盟、李晋、吴加勇

主办部门:理学院数学系

摘要:Cowen and Thomson's remarkable on analytic Toeplitz operators says that on the Bergman space over the unit disk, under some mild condition a bounded holomorphic function h on \mathbb{D}, can be written as a function of a finite Blaschke product $B$ such that the commutant of the Toeplitz operator defined by $h$ equals that of the Toeplitz operator defined by B; that is, {M_h}'={M_B}'. In particular, this holds if h lies in Hol(\overline{\mathbb{D}}).

From a geometric approach, we discuss properties concerning irreducibility for the classes of multiplication operators of finite Blaschke product, and also give nontrivial applications to the Dirichlet space.

上一条:量子科技研究院Seminar第35讲暨物理学科Seminar第705讲 量子多体问题

下一条:数学学科Seminar第2778讲 利用深度神经网络设计高维闭环最优控制