数学学科Seminar第2762讲 偏微分方程的局部赫米特近似特解法

创建时间:  2024/10/30  龚惠英   浏览次数:   返回

报告题目 (Title):Localized Hermite Method of Approximate Particular Solutions applied to partial differential equations (偏微分方程的局部赫米特近似特解法)

报告人 (Speaker): 朱慧卿 教授(美国南密西西比大学)

报告时间 (Time):2024年10月31日(周四) 10:00

报告地点 (Place):#腾讯会议:485-124-719

邀请人(Inviter):李新祥

主办部门:理学院数学系

报告摘要:A novel localized Hermite method of approximate particular solutions (LHMAPS) is proposed for solving Elliptic-type partial differential equations. This method incorporates both radial basis functions and their particular solutions within local stencils to simultaneously approximate both the solution and its Laplacian. Numerical experiments show that this proposed method significantly improves the accuracy of the localized method of approximate particular solutions (LMAPS).

上一条:数学学科Seminar第2763讲 Nonlinear Model reduction methods for parametric dynamical systems

下一条:数学学科Seminar第2761讲 约束PDE的高效高精度算法


数学学科Seminar第2762讲 偏微分方程的局部赫米特近似特解法

创建时间:  2024/10/30  龚惠英   浏览次数:   返回

报告题目 (Title):Localized Hermite Method of Approximate Particular Solutions applied to partial differential equations (偏微分方程的局部赫米特近似特解法)

报告人 (Speaker): 朱慧卿 教授(美国南密西西比大学)

报告时间 (Time):2024年10月31日(周四) 10:00

报告地点 (Place):#腾讯会议:485-124-719

邀请人(Inviter):李新祥

主办部门:理学院数学系

报告摘要:A novel localized Hermite method of approximate particular solutions (LHMAPS) is proposed for solving Elliptic-type partial differential equations. This method incorporates both radial basis functions and their particular solutions within local stencils to simultaneously approximate both the solution and its Laplacian. Numerical experiments show that this proposed method significantly improves the accuracy of the localized method of approximate particular solutions (LMAPS).

上一条:数学学科Seminar第2763讲 Nonlinear Model reduction methods for parametric dynamical systems

下一条:数学学科Seminar第2761讲 约束PDE的高效高精度算法