数学学科Seminar第2760讲 Kohn--Sham 广义特征值问题的一种新的分裂方法

创建时间:  2024/10/30  龚惠英   浏览次数:   返回

报告题目 (Title):Kohn--Sham 广义特征值问题的一种新的分裂方法 (A novel splitting method for the generalized eigenvalue problem from Kohn--Sham equation)

报告人 (Speaker): 况阳 副教授 (广东工业大学)

报告时间 (Time):2024年10月30日(周三)11:00

报告地点 (Place): 校本部GJ304

邀请人(Inviter):秦晓雪

主办部门:理学院数学系

报告摘要:We propose a novel eigenpair-splitting method, inspired by the divide-and-conquer (DAC) strategy, for solving the generalized eigenvalue problem arising from the Kohn-Sham equation. Unlike the commonly used domain decomposition approach in DAC, which solves the problem on a series of subdomains, our eigenpair-splitting method focuses on solving a series of subequations defined on the entire domain. This method is realized by integrating two key techniques: a multi-mesh strategy for generating approximate spaces for the subequations, and a soft-locking technique that allows for the independent solution of eigenpairs. Numerical experiments, including those involving the HOMO-LUMO gap, demonstrate the potential of the eigenpair-splitting method to enhance simulation efficiency. Furthermore, we discuss the optimal strategy for grouping eigenpairs and outline possible future improvements to the proposed method.

上一条:数学学科Seminar第2761讲 约束PDE的高效高精度算法

下一条:物理学科Seminar第697讲 基于玻色-爱因斯坦凝聚体的量子热机及活塞控制


数学学科Seminar第2760讲 Kohn--Sham 广义特征值问题的一种新的分裂方法

创建时间:  2024/10/30  龚惠英   浏览次数:   返回

报告题目 (Title):Kohn--Sham 广义特征值问题的一种新的分裂方法 (A novel splitting method for the generalized eigenvalue problem from Kohn--Sham equation)

报告人 (Speaker): 况阳 副教授 (广东工业大学)

报告时间 (Time):2024年10月30日(周三)11:00

报告地点 (Place): 校本部GJ304

邀请人(Inviter):秦晓雪

主办部门:理学院数学系

报告摘要:We propose a novel eigenpair-splitting method, inspired by the divide-and-conquer (DAC) strategy, for solving the generalized eigenvalue problem arising from the Kohn-Sham equation. Unlike the commonly used domain decomposition approach in DAC, which solves the problem on a series of subdomains, our eigenpair-splitting method focuses on solving a series of subequations defined on the entire domain. This method is realized by integrating two key techniques: a multi-mesh strategy for generating approximate spaces for the subequations, and a soft-locking technique that allows for the independent solution of eigenpairs. Numerical experiments, including those involving the HOMO-LUMO gap, demonstrate the potential of the eigenpair-splitting method to enhance simulation efficiency. Furthermore, we discuss the optimal strategy for grouping eigenpairs and outline possible future improvements to the proposed method.

上一条:数学学科Seminar第2761讲 约束PDE的高效高精度算法

下一条:物理学科Seminar第697讲 基于玻色-爱因斯坦凝聚体的量子热机及活塞控制