数学学科Seminar第2733讲 Q4方程的tau函数: II

创建时间:  2024/09/29  龚惠英   浏览次数:   返回

报告题目 (Title):On the tau function of Q4: II(Q4方程的tau函数: II)

报告人 (Speaker):James Atkinson 副教授 (Northumbria University,UK)

报告时间 (Time):2024年09月28日(周六)16:00-17:30

报告地点 (Place):校本部GJ303

邀请人(Inviter):张大军

主办部门:理学院数学系

报告摘要:

For Q4, I will describe two exact seed solutions and their tau-functions, specifically, those associated with a deformed elliptic curve (in work with F.W.Nijhoff) and those with prescribed singularity patterns (with N.Joshi). A construction for Q4 will be given involving an intermediary polynomial in which variables and parameters are permuted together by the group of the Fano plane. It connects to a birational group obtained via a procedure of symmetry-completion inspired by 3D consistency. The technique is of interest because this correspond to the group of the elliptic Painleve equation.

上一条:数学学科Seminar第2734讲 Q4方程的tau函数

下一条:数学学科Seminar第2732讲 极大函数谱乘子的有界性


数学学科Seminar第2733讲 Q4方程的tau函数: II

创建时间:  2024/09/29  龚惠英   浏览次数:   返回

报告题目 (Title):On the tau function of Q4: II(Q4方程的tau函数: II)

报告人 (Speaker):James Atkinson 副教授 (Northumbria University,UK)

报告时间 (Time):2024年09月28日(周六)16:00-17:30

报告地点 (Place):校本部GJ303

邀请人(Inviter):张大军

主办部门:理学院数学系

报告摘要:

For Q4, I will describe two exact seed solutions and their tau-functions, specifically, those associated with a deformed elliptic curve (in work with F.W.Nijhoff) and those with prescribed singularity patterns (with N.Joshi). A construction for Q4 will be given involving an intermediary polynomial in which variables and parameters are permuted together by the group of the Fano plane. It connects to a birational group obtained via a procedure of symmetry-completion inspired by 3D consistency. The technique is of interest because this correspond to the group of the elliptic Painleve equation.

上一条:数学学科Seminar第2734讲 Q4方程的tau函数

下一条:数学学科Seminar第2732讲 极大函数谱乘子的有界性