数学学科Seminar第2711讲 QRT映射的几何非自治化与离散Painlevé方程

创建时间:  2024/09/19  龚惠英   浏览次数:   返回

报告题目 (Title):Geometric deautonomization from a QRT map to a discrete Painlevé equation:I, II, III (QRT映射的几何非自治化与离散Painlevé方程)

报告人 (Speaker):Anton Dzhamay 教授(北京雁栖湖应用数学研究院BIMSA)

报告时间 (Time):(I): 2024年09月19日 15:40-17:10

         (II): 2024年09月20日 14:00-16:30

         (III): 2024年09月21日 09:00-10:30

报告地点 (Place):校本部GJ303

邀请人(Inviter):张大军

主办部门:理学院数学系

报告摘要:

Many examples of discrete Painlevé equations were originally obtained by B. Grammaticos, A. Ramani, and their collaborators, via the application of the singularity confinement criterion to the deautonomizations of QRT mappings. This approach is algebraic. In a 2019 paper with S. Carstea and T. Takenawa we explained an alternative, geometric approach, where a deautonomization of a QRT map is constructed from a choice of a (singular) fiber of the QRT elliptic surface. The goal of my talks would be to give an elementary introduction to this approach for a specific example of a QRT map, using the geometric methods of Sakai theory.

上一条:数学学科Seminar第2712讲 可积系统的非自治化与熵增长

下一条:数学学科Seminar第2710讲 关于由“最大”算子定义的方程 I, II


数学学科Seminar第2711讲 QRT映射的几何非自治化与离散Painlevé方程

创建时间:  2024/09/19  龚惠英   浏览次数:   返回

报告题目 (Title):Geometric deautonomization from a QRT map to a discrete Painlevé equation:I, II, III (QRT映射的几何非自治化与离散Painlevé方程)

报告人 (Speaker):Anton Dzhamay 教授(北京雁栖湖应用数学研究院BIMSA)

报告时间 (Time):(I): 2024年09月19日 15:40-17:10

         (II): 2024年09月20日 14:00-16:30

         (III): 2024年09月21日 09:00-10:30

报告地点 (Place):校本部GJ303

邀请人(Inviter):张大军

主办部门:理学院数学系

报告摘要:

Many examples of discrete Painlevé equations were originally obtained by B. Grammaticos, A. Ramani, and their collaborators, via the application of the singularity confinement criterion to the deautonomizations of QRT mappings. This approach is algebraic. In a 2019 paper with S. Carstea and T. Takenawa we explained an alternative, geometric approach, where a deautonomization of a QRT map is constructed from a choice of a (singular) fiber of the QRT elliptic surface. The goal of my talks would be to give an elementary introduction to this approach for a specific example of a QRT map, using the geometric methods of Sakai theory.

上一条:数学学科Seminar第2712讲 可积系统的非自治化与熵增长

下一条:数学学科Seminar第2710讲 关于由“最大”算子定义的方程 I, II