数学学科Seminar第2693讲 基于学习的优化算法

创建时间:  2024/08/28  龚惠英   浏览次数:   返回

报告题目 (Title):Exploring the Learning-based Optimization Algorithms(基于学习的优化算法)

报告人 (Speaker):文再文 教授(北京大学)

报告时间 (Time):2024年8月28日 (周三) 15:00

报告地点 (Place):校本部GJ303

邀请人(Inviter):徐姿 教授

主办部门:理学院数学系

报告摘要:

This talk will explore new paradigms for integrating data, models, algorithms, and theories in mathematical optimization. Firstly, we try to understand acceleration methods through ordinary differential equations (ODEs). Under convergence and stability conditions, we formulate a learning optimization problem that minimizes stopping time. This involves transforming the rapid convergence observed in continuous-time models into discrete-time iterative methods based on data. Next, we introduce a Monte Carlo strategy optimization algorithm for solving integer programming problems. This approach constructs probabilistic models to learn parameterized strategy distributions from data, enabling the sampling of integer solutions. Lastly, we discuss the vision of advancing automated theorem proving through formalization assisted by artificial intelligence.

上一条:物理学科Seminar第678讲 两组份能隙孤子的拓扑输运和囚禁

下一条:数学学科Seminar第2692讲 量子环面代数的表示II


数学学科Seminar第2693讲 基于学习的优化算法

创建时间:  2024/08/28  龚惠英   浏览次数:   返回

报告题目 (Title):Exploring the Learning-based Optimization Algorithms(基于学习的优化算法)

报告人 (Speaker):文再文 教授(北京大学)

报告时间 (Time):2024年8月28日 (周三) 15:00

报告地点 (Place):校本部GJ303

邀请人(Inviter):徐姿 教授

主办部门:理学院数学系

报告摘要:

This talk will explore new paradigms for integrating data, models, algorithms, and theories in mathematical optimization. Firstly, we try to understand acceleration methods through ordinary differential equations (ODEs). Under convergence and stability conditions, we formulate a learning optimization problem that minimizes stopping time. This involves transforming the rapid convergence observed in continuous-time models into discrete-time iterative methods based on data. Next, we introduce a Monte Carlo strategy optimization algorithm for solving integer programming problems. This approach constructs probabilistic models to learn parameterized strategy distributions from data, enabling the sampling of integer solutions. Lastly, we discuss the vision of advancing automated theorem proving through formalization assisted by artificial intelligence.

上一条:物理学科Seminar第678讲 两组份能隙孤子的拓扑输运和囚禁

下一条:数学学科Seminar第2692讲 量子环面代数的表示II