数学学科Seminar第2427讲 非线性偏微分方程时间全局的数值稳定性

创建时间:  2023/07/24  龚惠英   浏览次数:   返回

报告题目 (Title):Global in time numerical stability for nonlinear PDEs. (非线性偏微分方程时间全局的数值稳定性)

报告人 (Speaker): 王成 教授(University of Massachusetts Dartmouth)

报告时间 (Time):2023年7月22日(周六) 10:00 -11:00

报告地点 (Place):校本部A201

邀请人(Inviter):段成华

主办部门:理学院数学系

报告摘要:

Uniform in time numerical stability for certain nonlinear PDEs, such as incompressible fluid flow and a few bi-stable gradient flow models,

are presented in this talk. For 2-D incompressible Navier-Stokes equation, a global bound in L^2 and H^m norms for the numerical solution is obtained. For the bi-stable gradient flows, such as the epitaxial thin film growth with slope selection, the convexity splitting nature of the numerical scheme assures its non-increasing energy. Some long time numerical simulations will also be presented.

上一条:数学学科Seminar第2428讲 Ap权函数

下一条:数学学科Seminar第2426讲 带有音速边界的半导体流体动力学模型:结构稳定性与拟中性极限


数学学科Seminar第2427讲 非线性偏微分方程时间全局的数值稳定性

创建时间:  2023/07/24  龚惠英   浏览次数:   返回

报告题目 (Title):Global in time numerical stability for nonlinear PDEs. (非线性偏微分方程时间全局的数值稳定性)

报告人 (Speaker): 王成 教授(University of Massachusetts Dartmouth)

报告时间 (Time):2023年7月22日(周六) 10:00 -11:00

报告地点 (Place):校本部A201

邀请人(Inviter):段成华

主办部门:理学院数学系

报告摘要:

Uniform in time numerical stability for certain nonlinear PDEs, such as incompressible fluid flow and a few bi-stable gradient flow models,

are presented in this talk. For 2-D incompressible Navier-Stokes equation, a global bound in L^2 and H^m norms for the numerical solution is obtained. For the bi-stable gradient flows, such as the epitaxial thin film growth with slope selection, the convexity splitting nature of the numerical scheme assures its non-increasing energy. Some long time numerical simulations will also be presented.

上一条:数学学科Seminar第2428讲 Ap权函数

下一条:数学学科Seminar第2426讲 带有音速边界的半导体流体动力学模型:结构稳定性与拟中性极限