数学学科Seminar第2424讲 三维非截断玻尔兹曼方程的低正则性整体解

创建时间:  2023/07/21  龚惠英   浏览次数:   返回

报告题目 (Title):三维非截断玻尔兹曼方程的低正则性整体解

报告人 (Speaker):段仁军 教授 (香港中文大学)

报告时间 (Time):2023年7月19日(周三) 10:00 -12:00

报告地点 (Place):线上 (腾讯会议 ID: 128 110 896)

邀请人(Inviter):朱佩成 教授

主办部门:理学院数学系

报告摘要: A class of low-regularity solutions via the Wiener algebra for the non-cutoff Boltzmann equation on the torus was previously introduced in collaboration with Liu, Sakamoto and Strain. In the talk, I will further report how to extend the result to the case of the whole space. In this case, we develop an L1-L∞ interplay technique in the Fourier space to overcome the weaker macroscopic dissipation due to diffusion phenomenon in contrast to the torus case. The key is to employ time-weighted estimates motivated from viscous conservation laws. Joint work with Shota Sakamoto and Yoshihiro Ueda.

上一条:数学大师讲坛第三讲暨数学学科Seminar第2425讲 关于三维各向异性Navier-Stokes方程的整体解

下一条:数学学科Seminar第2423讲 最小-最大原则下的特征值和奇异值不等式


数学学科Seminar第2424讲 三维非截断玻尔兹曼方程的低正则性整体解

创建时间:  2023/07/21  龚惠英   浏览次数:   返回

报告题目 (Title):三维非截断玻尔兹曼方程的低正则性整体解

报告人 (Speaker):段仁军 教授 (香港中文大学)

报告时间 (Time):2023年7月19日(周三) 10:00 -12:00

报告地点 (Place):线上 (腾讯会议 ID: 128 110 896)

邀请人(Inviter):朱佩成 教授

主办部门:理学院数学系

报告摘要: A class of low-regularity solutions via the Wiener algebra for the non-cutoff Boltzmann equation on the torus was previously introduced in collaboration with Liu, Sakamoto and Strain. In the talk, I will further report how to extend the result to the case of the whole space. In this case, we develop an L1-L∞ interplay technique in the Fourier space to overcome the weaker macroscopic dissipation due to diffusion phenomenon in contrast to the torus case. The key is to employ time-weighted estimates motivated from viscous conservation laws. Joint work with Shota Sakamoto and Yoshihiro Ueda.

上一条:数学大师讲坛第三讲暨数学学科Seminar第2425讲 关于三维各向异性Navier-Stokes方程的整体解

下一条:数学学科Seminar第2423讲 最小-最大原则下的特征值和奇异值不等式