数学学科Seminar第2400讲 组合时变的切换系统最优控制问题

创建时间:  2023/06/07  龚惠英   浏览次数:   返回

报告题目 (Title):A Composite time scaling transform for switching time optimal control problems(组合时变的切换系统最优控制问题)

报告人 (Speaker): Kok Lay Teo 教授(Sunway University、Curtin University)

报告时间 (Time):2023年06 月10日 ( 周六 ) 15:00-17:00

报告地点 (Place):校本部 E421

邀请人(Inviter):白延琴 教授

主办部门:理学院数学系

报告摘要:

Abstract: The control parameterization technique used in conjunction with the time scaling transform is an effective computational method for solving various optimal control problems. More specifically, the control parameterization method approximates the control function as a piecewise constant function with its height and switching times as decision variables. The time scaling transform maps variable time points into fixed time points in a new time horizon. Thus, the optimal control problem is approximated as an optimal parameter selection problem, which is a finite dimensional optimization problem, and hence can be solved by gradient be transformation optimization methods. However, the conventional time-scaling requires that the switching times for all the control components switch simultaneously witch can be undesirable in practice.

上一条:物理学科Seminar第608讲 手性量子点系统中的古斯-汉欣位移及其应用

下一条:数学学科Seminar第2399讲 量子顶点代数的形变构造


数学学科Seminar第2400讲 组合时变的切换系统最优控制问题

创建时间:  2023/06/07  龚惠英   浏览次数:   返回

报告题目 (Title):A Composite time scaling transform for switching time optimal control problems(组合时变的切换系统最优控制问题)

报告人 (Speaker): Kok Lay Teo 教授(Sunway University、Curtin University)

报告时间 (Time):2023年06 月10日 ( 周六 ) 15:00-17:00

报告地点 (Place):校本部 E421

邀请人(Inviter):白延琴 教授

主办部门:理学院数学系

报告摘要:

Abstract: The control parameterization technique used in conjunction with the time scaling transform is an effective computational method for solving various optimal control problems. More specifically, the control parameterization method approximates the control function as a piecewise constant function with its height and switching times as decision variables. The time scaling transform maps variable time points into fixed time points in a new time horizon. Thus, the optimal control problem is approximated as an optimal parameter selection problem, which is a finite dimensional optimization problem, and hence can be solved by gradient be transformation optimization methods. However, the conventional time-scaling requires that the switching times for all the control components switch simultaneously witch can be undesirable in practice.

上一条:物理学科Seminar第608讲 手性量子点系统中的古斯-汉欣位移及其应用

下一条:数学学科Seminar第2399讲 量子顶点代数的形变构造