数学学科Seminar第2377讲 基于物理学知识的神经网络混合训练寻求非线性薛定谔方程怪波解

创建时间:  2023/05/10  龚惠英   浏览次数:   返回

报告题目 (Title):基于物理学知识的神经网络混合训练寻求非线性薛定谔方程怪波解(Mix-training physics-informed neural networks for the rogue waves of nonlinear Schrodinger equation)

报告人 (Speaker): 李彪 教授(宁波大学)

报告时间 (Time):2023年5月12日(周五) 16:00

报告地点 (Place):腾讯会议:586 592 749

邀请人(Inviter):夏铁成

主办部门:理学院数学系

报告摘要:In this work, we propose Mix-training physics-informed neural networks (PINNs), a deep learning model with more approximation ability based on PINNs, combined with mixed training and prior information. We demonstrate the advantages of this model by exploring rogue waves with rich dynamic behavior in the nonlinear Schrodinger (NLS) equation. Numerical results show that compared with the original PINNs, this model can not only quickly recover the dynamical behavior of the rogue waves of NLS equation, but also significantly improve its approximation ability and absolute error accuracy, the prediction accuracy improved by two to three orders of magnitude. In particular, when the space-time domain of the solution expands or the solution has a local sharp region, the proposed model still has high prediction accuracy.

上一条:数学学科Seminar第2378讲 加权的变指标Hardy空间的实变理论

下一条:物理学科Seminar第605讲 带毛黑洞的成像和阴影


数学学科Seminar第2377讲 基于物理学知识的神经网络混合训练寻求非线性薛定谔方程怪波解

创建时间:  2023/05/10  龚惠英   浏览次数:   返回

报告题目 (Title):基于物理学知识的神经网络混合训练寻求非线性薛定谔方程怪波解(Mix-training physics-informed neural networks for the rogue waves of nonlinear Schrodinger equation)

报告人 (Speaker): 李彪 教授(宁波大学)

报告时间 (Time):2023年5月12日(周五) 16:00

报告地点 (Place):腾讯会议:586 592 749

邀请人(Inviter):夏铁成

主办部门:理学院数学系

报告摘要:In this work, we propose Mix-training physics-informed neural networks (PINNs), a deep learning model with more approximation ability based on PINNs, combined with mixed training and prior information. We demonstrate the advantages of this model by exploring rogue waves with rich dynamic behavior in the nonlinear Schrodinger (NLS) equation. Numerical results show that compared with the original PINNs, this model can not only quickly recover the dynamical behavior of the rogue waves of NLS equation, but also significantly improve its approximation ability and absolute error accuracy, the prediction accuracy improved by two to three orders of magnitude. In particular, when the space-time domain of the solution expands or the solution has a local sharp region, the proposed model still has high prediction accuracy.

上一条:数学学科Seminar第2378讲 加权的变指标Hardy空间的实变理论

下一条:物理学科Seminar第605讲 带毛黑洞的成像和阴影