数学学科Seminar第2373讲 椭圆方程逐点跟踪最优控制问题的自适应HGD方法

创建时间:  2023/04/28  龚惠英   浏览次数:   返回

报告题目 (Title):An adaptive HGD method for the pointwise tracking optimal control problem of elliptic equations (椭圆方程逐点跟踪最优控制问题的自适应HGD方法)

报告人 (Speaker):陈艳萍 教授(华南师范大学)

报告时间 (Time):2023年5月11日(周四) 10:30-11:30

报告地点 (Place):校本部F309

邀请人(Inviter):李常品、蔡敏

主办部门:理学院数学系

报告摘要:In this talk, we study an optimal control problem with point values of state in the objective functional. The state and adjoint state are approximated by a hybridized discontinuous Galerkin (HDG) method, and the control is discretized by the variational discretization concept. With the help of the error estimates of Green’s function and Oswald interpolation, reliable and efficient a posteriori error estimates for the errors in the control, state and adjoint state variables are obtained. Several numerical examples are provided to show the performance of the obtained a posteriori error estimators.

上一条:上海大学核心数学研究所——几何与分析综合报告第31讲 齐次Monge-Ampere方程的最大秩定理

下一条:数学学科Seminar第2372讲 分数阶粘弹性梁: 建模、分析和仿真


数学学科Seminar第2373讲 椭圆方程逐点跟踪最优控制问题的自适应HGD方法

创建时间:  2023/04/28  龚惠英   浏览次数:   返回

报告题目 (Title):An adaptive HGD method for the pointwise tracking optimal control problem of elliptic equations (椭圆方程逐点跟踪最优控制问题的自适应HGD方法)

报告人 (Speaker):陈艳萍 教授(华南师范大学)

报告时间 (Time):2023年5月11日(周四) 10:30-11:30

报告地点 (Place):校本部F309

邀请人(Inviter):李常品、蔡敏

主办部门:理学院数学系

报告摘要:In this talk, we study an optimal control problem with point values of state in the objective functional. The state and adjoint state are approximated by a hybridized discontinuous Galerkin (HDG) method, and the control is discretized by the variational discretization concept. With the help of the error estimates of Green’s function and Oswald interpolation, reliable and efficient a posteriori error estimates for the errors in the control, state and adjoint state variables are obtained. Several numerical examples are provided to show the performance of the obtained a posteriori error estimators.

上一条:上海大学核心数学研究所——几何与分析综合报告第31讲 齐次Monge-Ampere方程的最大秩定理

下一条:数学学科Seminar第2372讲 分数阶粘弹性梁: 建模、分析和仿真