数学学科Seminar第2361讲 有向图的Majority染色数的界刻画

创建时间:  2023/04/12  龚惠英   浏览次数:   返回

报告题目 (Title):有向图的Majority染色数的界刻画(New bounds on Majority coloring of digraphs )

报告人 (Speaker):蔡建生 教授(潍坊学院)

报告时间 (Time):2023年04月13日(周四) 10:00-11:00

报告地点 (Place):校本部F309

邀请人(Inviter):袁西英

主办部门:理学院数学系

报告摘要:Title Abstract: A majority $k$-coloring of a digraph $D$ with $k$ colors is an assignment $c:V(D) \rightarrow \{1,2,\cdots ,k\}$, such that for every $v\in V(D)$, we have $c(w)=c(v)$ for at most half of all out-neighbors $w\in N^+(v)$. Kreutzer et al. conjectured that every digraph admits a majority 3-coloring. For a natural number $k\geq 2$, a $\frac{1}{k}$-majority coloring of a digraph is a coloring of the vertices such that each vertex receives the same color as at most a $\frac{1}{k}$ proportion of its out-neighbours. Gir$\widetilde{a}$o et al. conjectured that every digraph admits a $\frac{1}{k}$-majority $(2k-1)$-coloring. In this paper, we prove that Kreutzer's conjecture is true for digraphs under some conditions, which improves Kreutzer's results. Moreover, we discuss the majority 3-coloring of random digraph with some conditions.

上一条:物理学科Seminar第603讲 量子化学方法应用于玻色-费米子的相互作用

下一条:数学学科Seminar第2360讲 代数簇双有理自同构群的约当性质


数学学科Seminar第2361讲 有向图的Majority染色数的界刻画

创建时间:  2023/04/12  龚惠英   浏览次数:   返回

报告题目 (Title):有向图的Majority染色数的界刻画(New bounds on Majority coloring of digraphs )

报告人 (Speaker):蔡建生 教授(潍坊学院)

报告时间 (Time):2023年04月13日(周四) 10:00-11:00

报告地点 (Place):校本部F309

邀请人(Inviter):袁西英

主办部门:理学院数学系

报告摘要:Title Abstract: A majority $k$-coloring of a digraph $D$ with $k$ colors is an assignment $c:V(D) \rightarrow \{1,2,\cdots ,k\}$, such that for every $v\in V(D)$, we have $c(w)=c(v)$ for at most half of all out-neighbors $w\in N^+(v)$. Kreutzer et al. conjectured that every digraph admits a majority 3-coloring. For a natural number $k\geq 2$, a $\frac{1}{k}$-majority coloring of a digraph is a coloring of the vertices such that each vertex receives the same color as at most a $\frac{1}{k}$ proportion of its out-neighbours. Gir$\widetilde{a}$o et al. conjectured that every digraph admits a $\frac{1}{k}$-majority $(2k-1)$-coloring. In this paper, we prove that Kreutzer's conjecture is true for digraphs under some conditions, which improves Kreutzer's results. Moreover, we discuss the majority 3-coloring of random digraph with some conditions.

上一条:物理学科Seminar第603讲 量子化学方法应用于玻色-费米子的相互作用

下一条:数学学科Seminar第2360讲 代数簇双有理自同构群的约当性质