数学学科Seminar第2354讲 光滑区域时谐Maxwell问题的一种直接延拓稳定非匹配有限元法

创建时间:  2023/04/03  龚惠英   浏览次数:   返回

报告题目 (Title):An unfitted finite element method with direct extension stabilization for time-harmonic Maxwell problems on smooth domains(光滑区域时谐Maxwell问题的一种直接延拓稳定非匹配有限元法)

报告人 (Speaker): 谢小平 教授(四川大学)

报告时间 (Time):2023年4月8日(周六) 10:00

报告地点 (Place):腾讯会议(106-552-458,密码 230406)

邀请人(Inviter):刘东杰 教授

主办部门:理学院数学系

报告摘要:

We propose an unfitted finite element method for numerically solving the time-harmonic Maxwell equations on a smooth domain. The embedded boundary of the domain is allowed to cut through the background mesh arbitrarily. The unfitted scheme is based on a mixed interior penalty formulation, where the Nitsche penalty method is applied to enforce the boundary condition in a weak sense, and a penalty stabilization technique is adopted based on a local direct extension operator to ensure the stability for cut elements. We prove the inf-sup stability and obtain optimal convergence rates under the energy norm and the $L^2$ norm for both variables. Numerical examples in both two and three dimensions are presented to illustrate the accuracy of the method.

上一条:“尚理书院·大师讲坛”暨数学学科Seminar第2355讲 大学生数学建模竞赛介绍与经验分享

下一条:数学学科Seminar第2353讲 双图正则化前景背景分离法


数学学科Seminar第2354讲 光滑区域时谐Maxwell问题的一种直接延拓稳定非匹配有限元法

创建时间:  2023/04/03  龚惠英   浏览次数:   返回

报告题目 (Title):An unfitted finite element method with direct extension stabilization for time-harmonic Maxwell problems on smooth domains(光滑区域时谐Maxwell问题的一种直接延拓稳定非匹配有限元法)

报告人 (Speaker): 谢小平 教授(四川大学)

报告时间 (Time):2023年4月8日(周六) 10:00

报告地点 (Place):腾讯会议(106-552-458,密码 230406)

邀请人(Inviter):刘东杰 教授

主办部门:理学院数学系

报告摘要:

We propose an unfitted finite element method for numerically solving the time-harmonic Maxwell equations on a smooth domain. The embedded boundary of the domain is allowed to cut through the background mesh arbitrarily. The unfitted scheme is based on a mixed interior penalty formulation, where the Nitsche penalty method is applied to enforce the boundary condition in a weak sense, and a penalty stabilization technique is adopted based on a local direct extension operator to ensure the stability for cut elements. We prove the inf-sup stability and obtain optimal convergence rates under the energy norm and the $L^2$ norm for both variables. Numerical examples in both two and three dimensions are presented to illustrate the accuracy of the method.

上一条:“尚理书院·大师讲坛”暨数学学科Seminar第2355讲 大学生数学建模竞赛介绍与经验分享

下一条:数学学科Seminar第2353讲 双图正则化前景背景分离法