上海大学核心数学研究所——几何与分析综合报告第17讲 On the Willmore problem for surfaces with symmetries

创建时间:  2022/11/15  龚惠英   浏览次数:   返回

报告题目 (Title):On the Willmore problem for surfaces with symmetries

报告人 (Speaker):王鹏 教授(福建师范大学)

报告时间 (Time):2022年11月17日(周二) 10:00-11:00

报告地点 (Place):腾讯会议(716-8675-1741)

邀请人(Inviter):席东盟、李晋、张德凯

主办部门:理学院数学系

报告摘要:The famous Willmore conjectures states that the Clifford torus minimizes Willmore energy among all 2-tori in S^3, which was proved by Marques and Neves. For higher genus surfaces, it was conjectured by Kusner that the Lawson minimal surfaces $\xi_{g,1}$ minimizes the Willmore energy for all immersions in $S^3$ with genus g>1. We show that it holds for surfaces in S^3 which have genus g>1 and are symmetric w.r.t. the group \tilde{G}_{g,1}. Here \tilde{G}_{g,1} denotes a group generated by halfturns about some great circles of S^3, which is a subgourp of the symmetric group of \xi_{g,1}. This is a joint work with Prof. Kusner (UMass Amherst) and Prof. Ying Lv (Xiamen Univ.)

上一条:纳米中心学术报告 面向能源革命的微孔材料膜

下一条:数学学科Seminar第2328讲 关于仅有三个不同特征值的距离正则图


上海大学核心数学研究所——几何与分析综合报告第17讲 On the Willmore problem for surfaces with symmetries

创建时间:  2022/11/15  龚惠英   浏览次数:   返回

报告题目 (Title):On the Willmore problem for surfaces with symmetries

报告人 (Speaker):王鹏 教授(福建师范大学)

报告时间 (Time):2022年11月17日(周二) 10:00-11:00

报告地点 (Place):腾讯会议(716-8675-1741)

邀请人(Inviter):席东盟、李晋、张德凯

主办部门:理学院数学系

报告摘要:The famous Willmore conjectures states that the Clifford torus minimizes Willmore energy among all 2-tori in S^3, which was proved by Marques and Neves. For higher genus surfaces, it was conjectured by Kusner that the Lawson minimal surfaces $\xi_{g,1}$ minimizes the Willmore energy for all immersions in $S^3$ with genus g>1. We show that it holds for surfaces in S^3 which have genus g>1 and are symmetric w.r.t. the group \tilde{G}_{g,1}. Here \tilde{G}_{g,1} denotes a group generated by halfturns about some great circles of S^3, which is a subgourp of the symmetric group of \xi_{g,1}. This is a joint work with Prof. Kusner (UMass Amherst) and Prof. Ying Lv (Xiamen Univ.)

上一条:纳米中心学术报告 面向能源革命的微孔材料膜

下一条:数学学科Seminar第2328讲 关于仅有三个不同特征值的距离正则图